
1B8NI",a-WI

THE COMPUTER JOURNAL~
For Those Who Interface, Build, and Apply Micros

Issu. Num~r 22 S2.30US

NEW-DOS
Write Your Own Operating System paleS

Variability In The BOS C Standard Library
Porting 80S C To CP/M 86 pale21

The SCSI Interface
Introductory Column To A Series pale2S

Indexed Sequential Access Method Files
Using Turbo PascaiiSAM Files pille27

The AMPRO Little Board Column pale42

The Computer Corner paleS6

Th~eomputer Journal/Issue #22

your circuit!
Jock Root
L.A.,CA

Data Acquisition and Control
I enjoy reading your informative

journal. Mr Jerry Houston's article
on analog data acquisition and con
trol systems was especially in
teresting to me.

I wonder if he and!or others might
be interested in elaborating on ac
tual applications of ADC units, such
as those mentioned in his article. As
you know, some of these devices are
relatively inexpensive and most can
be interfaced through RS-232 with a
number of different micros. In my
opinion, they present a unique oppor
tunity for us who interface micros
with the real world. I am sure that a
number of your current readers and
potential new subscribers would be
. terested in this area.
"rl1aDl~ for your efforts on editing

and -publishing The Computer Jour
nal.

Matthew K. Rogoyski, Ph.D.
Hotchkiss, CO

Df2~ ?~t-
i/
For instance, if you're trying to get

a long time delay in a 555 timing cir
cuit, by using a fairly small
capacitor and a very high resistan
ce, you had better clean off all the
flux when you finish-or the conduc-
tivity of that "non-conducting" flux FORTH
may upset your calculations con- Bill Kibler: I have just read your
siderably. Or if you're working with Computer Corner column in issue #17
CMOS ICs, you may find that current and I am interested in your idea of
leakage from one of the power suply buildinga' z-so FORTH unit. I am
pins to,' .an adjacent input pin, currentlY learning 64 FORTH from
througJI un-removed rosin flux HES /'On my Commodore 64 and
residue, can shut· down the circuit would like to put FORTH on a z-so
entirely! ooard that I have already built.

1h short, whenever you're working I I became interested in FORTH
with high resistances or low curren- / ~ause I work with elevators which

/ ts, you had better clean all the old" are rapidly becoming computerized
flux off the board before you power,it and FORTH seems perfectly suited
up, or you may find a nasty bug<'in to this field.

/ Any columns on Z-BO FORTH
". would be greatly appreciated. As

usual, you and everyone at The
Computer Journal are doing a great
job.

G.K.
New York

\

• Extreme organizational flexlbiliry. each drrect0'Y anorher enVIronment

• Multiple Commands per line

• ."-Ilases /complex serres of commands known by s,mple names/ With varrable pasSing

• Named Drrectorres With absolute password securr!)

• Full-screen command line editing With prt'VJous command recall and execution

• Shells and Menu Generators. With shell varrables

• Command-file search Paths. dynamically alterable

• Screen-{)rrented file manrpulalion and automatic archMng and backup

• 512 megabyte file sizes. 8 gigabyte diSks handled

• Auto disk reset fJhen changing floppies

• TCAP databasr!handles characterrstlcs of olot'r 50 compurers and terminals.
more easily added

• Tree-filruetwed online help and dOCumentalion subsysrem

• 76 syntax-Compalible support utilities

Real-tIme control kernel option allOWl qUick s ftware development for In striaI control
applications. other tools and utilities for office de -top personal compurrng functlo local area
networks [Q Ethernet. AppleTalk Omnlnet. AI et. PC -Net (Sytek! - from micro to Inframe
command. control and communications DI\!f;buted p(Q(esslng application programs ar aSlly
d~IOped '

\

\

~ SETS\OU FREE!
j ~'!

/
Z Operating System. an a-bit OS that t1iesl Optimized)8O/ZSO assembly language
code - full software dl!\l1!lopment system with prOllen I ble libraries of productive
subroutines - relocating (ROM and RAMI macro am;mb'r. linker. librarian. cross
reference table generator. debuggers. translators and dlsa~mblers - ready to free
you' / /

High ~formanceand rlexlbrllty' Proou([lWY results frln t1ynamlcally cu mlzed OS enwon
ments. matching operator. taSkS and maChine

heating the wire and applying rosin
core solder; then do the same again,
but put a little paste of liquid flux on
the wire before you start. You'll find
that the added flux makes for 'a
much neater and quicker job, and
also requires less heat from the iron.

Only a teeny tiny bit of flux is
required (more will just make a
mess); but the difference it makes is
tremen ous!

One inal, but very important
point: ut why (and when) you
need to c the flux residue off af-
terward. 'ney tell you that rosin is
non-eonductive...but that's not quite
true. It's non-conductive, compared
to a piece of wirei"but compared to a
ten-megohm resistpr, it conducts
quite nicely, thank you!

",

Your missing /Ink has been found - ZI Now fly with eaglesl Fast response. emdent
resource utilization. link to rest of computing world - shop floor to executive suite.
micro to corporate mainframe. Call 415/948-3820 for literature.

~l:.!J Echelon, Inc. 101F1rstStreel. Suite4Z7. LosAlt08,CA94022. 415/94&-382tI

(Continued on page 38)

· .
!'""\,..;. V
:'.~, I, j A \

iY':Li :~ \
J

The Computer Journal/Issue #22

Using C Is CP/M Dead? to say to myself, "this is neat, but
I read with interest your editorial Is CP/M dead? Are hammers how do I get to the system, and will

in Issue 21. It is possible to get most dead? Are nails dead? Is cooked food all of this spiff get in my way?" With
of the things you wish using some C a thing of the past? There are some the exception of the Ampro z..80
compilers (plus add-ons) but unfor- questions we writers should not machines, all that spiff did get in the
tunately, the BDS C compiler does dignify with an answer, and would way. Ampro allows me, the
not support them. Many C compilers not, if it weren't so much fun! operator/developer, to decide how

" support the pre-processor directives To be quite honest, I never saw much spiff I want.
~Nasm and #endasm. The use of these pure, virgin, CP/M until I just had to These days I design systems for

dfrectives allows the programmers see what it looked like. Pure CP/M is the disabled community. These are
to include in-line assembler code in an option on the Ampro Series 100 challenges greater than the space
his or h~C code. When the pre- systems. When I first booted it, I program, and demand the highest
processorf~ these directives, the thought my terminal program had technology. I need a system that I
code is marked'so that it will not be gone into high orbit (again). The can tailor to the specific needs of the
optimized during"'ttIe optimization point is, who uses pure CP/M? If individual. Not only must I be sure
pass on the compiler'~ this pass is CP/M is dead, then it has been dead that the system may be used by the
present). This is a "'great im- for a long time, and will be dead for individual with ease, but it must be
provement over the meth~which decades to come. reliable.
you have to use with BDS C. In te..rms It is only we masochistic system Now then, for the casual operator,
of "flash compiling", it is my~ programmers who ever see CP/M. CP/M does not present a great deal
pression that this could only be done".. We are the only ones who appreciate of flash, nor pretty noises. It must be
using a single pass Ccompiler (with,)t,..albeit ina love/hate relationship. remembered that CP/M was
of course, a built in editor). The What the' user sees, and com- designed as a business workhorse.
problem with single pass C com- muni~es with is the Console Com- For a person who just operates a
pilers is that they are sensitive to the mand Processor, (CPP). While it is computer, or perhaps plays with an
order in which #define's are listed in /8 "part of the-- standard CP/M Disk assembler, CP/M type systems have
the code. If several #define://Operating System, <DOS), it is little to offer. However, it is this type
statements refer to each other. aiId seldom allowed to remain as Digital of computerist that is the most vocal
are incorrectly ordered, a single Reseach intended it. "~rhaps the in what has been termed, "The DOS
pass compiler could end up with greatest gift to computerqom was WARS." When running an ap-
unresolved references, which would Richard Conn's ZCPR, ~CPP plications program, the operator
halt compilation. A good1llternative enhancement. . ",~, never sees the operating system,
would be the use of~C interpreter, I began computing in an industna only the applications program.
several of which/are now on the world. The king of the space'~~J ese vocalists are judging the per
market (although I believe all of program was the RCA CDPl802 "fQ ance of these programs, not the
them are ta~rfed at the IBM PC en- microprocessor. This was a CMOS 0 . g.systems. But, as I think of
vironment' ather than CP). These chip, and has been available literally it, th" pIe do not read TCJ
gener ve built in editors which for decades. People are just now either, b dough-files, or BC
will t back to the source code if discovering CMOS technologies, Weekly.
s x errors are found (similar to though few really understand them. The best thing about CP/M type

bo Pascal's editor). They are Hence, my perspective is that of hardware, as opposed to the CP/M
o generally syntactically com- machine intellect, robotics, operating system, is that there is a

patible with major PC C compilers satellites, and deep space probes, reasonably standard way of doing
(Lattice and Microsoft compilers where the machine must fend for it- things. If I didn't have a fully
and occasionally some others). The self. debugged set of routines to handle
problem here is that you are set back My world does not generally in- the disks, and terminal, I'd have to
the price of the interpreter (which volve spiffy graphics displays, write them. That is just the reality of
can range from $100.00 to $500.(0), as . though I appreciate that type of computing.
well as the cost of your compiler programming genius. Nor does it In my work I use equipment
(which, for Lattice and Microsoft generally involve complex designed to run CP/M. There are a
are not cheap). mathematical process. I am, after number of reasons for this choice.

Don Howes all just a lowly chip mechanic. First, is the price. Thousands of
Pullman, WA As I entered into the world of con- people are maimed daily in

sumer computers I was spellbound automobile mishaps. When a
by all the nifty features of CP/M disability strikes money is an issue.
machines. After about an hour I had In other fields, it is the same con-

The Computer Journal I Issue #22

SYSGEN will then ask for a destination drive, enter "A"
to place the standard CP1M image on drive'A.' The next
time SYSGEN asks for a destination drive, answer with
oruyaRETURN. \

o 6. "Flip" the reset button. Your system should come
back with the prompt: "A>'. Nothing is wrong, that is
just standard CP1M!

o 7. Now enter:

A> STATUS

and make note of th~ positions reported for the locations
of the BIOS, DOS, and CCP on the memory map in Figure
1, if they are different than those shown.

It is very important to accurately determine the
location of the CCP. If the new CCP does not begin in the
same place as the old one, then the system will not fun
ction. Each portion assumes another portion to be in a
given spot relative to itself.

o a.1f you do not have my source disks and assembler,
then enter the published source code, and convert the
data representations to those of your assembler.

Be sure to set the equate to be used by the ORG
statement to the proper value in file CCP.CRW, if the
location of the CCP is other than DaooH in your system.

If you do have the source disks you may now assemble
the source code by entering:

A> CROWE CROWE.AAZ

This will cause the assembler to look for the source file on
drive 'A,' place the ".HEX" file on drive 'A,' and omit a
".PRN" file. We do not want a PRN file due to the size of
the files being assembled.

o 9. When the source file has been assembled without
error enter:

A> DDT MYSYS.COM

DDT will sign on and present its own prompt, "-', then en
ter:

-ICCP.HEX
-R31SO

when the "-" prompt returns, enter

-GO

which will return you to the "A>" prompt. At this point
enter:

A> SAVE 41 NEW.COM
A>SYSGENNEW.COM

and place the new operating system on the 'A' drive as
was done in step 5, above. Reset the system and the
command prompt of "AO> " should be returned.

For a summary of your new system commands enter:

AO>HELP

and a help screen will appear.

1

A Bit Of Digression
An Overview of CCP Commands, Old And New

The standard CP1M CCP has the following commands:

a. DIR which returns a directory
b. TYPE which prints a text file
c. REN which renames a single file
d. ERA which deletes files
e. SAVE which we have already used
f. USER which changes subdirectories
g.' P (control-P) which sends whatever is

sent to the screen to the printer
h. "C which resets the system
i. "S which stops screen display when using

the TYPE function

It would be best if you referred to your system manual to
assure that you understand what these commands are,
and do. Our new CCP has all of these commands, and
more, some with expanded functions. The TYPE com
mand, which is called "READ," now has a built-in single
screen paging function. The basic command set is as
follows:

a.DIR
This command functions in the same manner as the stan
dard CP/M DIR command. The enhanced variations
available are:

DIR *. * S will display files with the "SYSTEM" at
tribute

DIR *. * U will display files of any attribute

b.READ
This command functions in the same manner as the stan
dard TYPE function, but has a built-in paging routine.
That is, it will display 22 lines of text from a text file and
stop, awaiting any keypress by the operator. This paging
function may be disabled by the suffIx "N," for no paging
enter:

READ MYFILE.TXT N

c.LIST
The LIST function is a relative of the READ command. It
reads a text file from the disk and sends it to the printer,
instead of the terminal. No paging options are currently
available for this command.

LIST MYFILE.TXT

d.REN
The REN, or rename command, renames one file at a
time, and has the syntax of:

REN NEW.FIL=OLD.FIL

where NEW.FIL is the name that OLD.FIL is to be given.

e.ERA
ERA deletes files individually, or en masse. Wild-cards
may be used. If the wild-card of *.* is used the system will
ask you if you really want to erase the entire directory.
Forms may include:

BOOKSHELFTM ~t;tlj 100
Fast, Compact, Hi9h Quality, Iasy-to-usc CP/M Srstcm

•

which would be returned as:

g. USER
This command changes the currently assigned "USER
AREA," or subdirectory. It has the form of:

USER 12
USERS

To inform the CCP that the number to be worked is in
hex, the "H" suffix is required. If a file name specified
already exists the system will ask you if you want to
overwrite it.

The Computer Journal / Issue #22

and so forth.

ERA MYFILE.TXT
ERAMYFILE.
ERA-.TXT
ERA-.
ERAMY????-

SAVE 41 MYFILE.COM
SAVE l2H HISFILE.COM

f.SAVE
We have already used the SAVE command. However,
DDT and the rest of microworld speaks hex. This has
meant that we have had to translate the number ofpages
to save into decimal to use this command. This function
now allows the option of specifying the number of pages
to be saved in a hexadecimal number.

,

~r

system W1tn ZCPR3

• Read/wnte/format dozens of
noppy formats (IBM PC-DOS,
KAYPRO, OSBORNE, MORROW ..)

• Menu-oased system customlZalJon
• Operator-friendly MENU snell

• OPTIONS

• Source Code
• TurtloDOS
• ZRDOS
• Hard diSk expanSIon to 60

mesabYtes
• SCSI/PLUS'· mullJ-fMSter I/O

expanSIon bus

• Local Area Networ1<
• SID Bus ADapter

• 4 MHz Z80A CPU, 64K RAM, Z8M
eTC, 4-32K EPROM

• MIni/MIcro Floppy Controller
(1·4 DrIVes, Single/Double DenSity,
1·2 SIded 40/80 track)

• 2 RS232C Serial Ports (75-9600 baud
& 75-38, 400 baud), 1 Centronics
Printer Port

• Power ReqUirement: + 5\1[)(at 7SA;
., 2VDC at05A I On bOard -, 2V
converter

• Only 5.75 x 7.75 Incnes, mounts
directly to a S·1! 4' disk drIVe

I • ComprenenslVe Software Included,
• Enhanced CP/M 2.2 operating

r
! Little Board™ •••• $149 i
I The World's Lust IXpcnsivc CPIM Engine

CP/M 2.2
INCLUDED

~r:I

L~~~
_/

D/5TlU8UT0RS

AllGlHT1Nk FACTOIlJAL, SA, : n 41.()()l8. M1CRCXOMPUTERS, 1613) 500-0628
TU< 224ll8InGIlJM, CENTRE IAAZIL, CNC·OATA l£ADER LTDA.
ELfCTRONIQUE LfMPEREUR,,041) 23-4541, ("1) 262-2262. TlX04'·6J6.4D£HM.tJtK:
TU< 42621 CA>Wlk OYNACOMP 0AN8IT. 1031 66-20-20, TU< 43558
COMPUTER sYSTEMS LTD, (0()4; 872-7737 FlHl.NlD, SYWo\ETRIC OY. (0) 585-322,
ENCilAHO, QUANT S'iSTEMS TU< 1213941SltA£L, ALPHA TUlMItW.S,
(011 253-8423, TU< 94024ll REF 19003131 LTD, (3) 4"-11>-95, nx 341667 $WED£N,
FRAHa, EGAl-, (1: 502-1800, TU< 620893 All,oJ(lA, (08) 54-20-20. TU< 13102 U5.k
SPAIN, XENIOS INFORMATiCA 593-0822, CONTACT AMPllO COMPUTERS INC,
TU< 50364.wslllAlJk ASP TEL .4151962-0230 TELEX 494ll302

• Ready-to-use profeSSIonal CP/M
computer system

• WOrks W1tn any RS232C ASCII
terminal (not Included)

• NetwOr1< available

• Compact 73 x 6.5 x 105 Incnes,
12.5 pounds, all-metal construction

• Powerful and versatile.
• Based on LJttle Board

Slngle-ooard computer

• One or two 400 or 800 KB floppy
drIVes

• 1~M8 Internal hard diSk dnve
option

Priced from
$895.00

10MBSyslem
Only $1645.00

• ComprenenslVe Software InCluded,
• Enhanced CP/M opcatJng system

W1tn ZCPR3

• Word procesSIng, spreadsheet,
relational database, spelling
cned<er, and data encrypt!
decrypt (T/MAKER 111'")

• Operator-fnendly snells; Menu,
Friendly'"

• Read/write and format dozens of
floppy formats (IBM PC-DOS,
KAYPRO,OSBORNE,MORROW...)

• Menu-t>ased system customlzatJon

A12>
AS>

in the prompt. The concept of a "USER AREA" is at best
false, as there are no such "areas" on the disk. All this
command does is assign special directory numbers.
Without this ability to assign special directories large
systems would have many screens of directory listings in
response to the DIR command.

h.PATH
The PATH command modifies the search path the CCP
uses in attempting to locate a fIle for us. In the standard
CCP there is no search path. In this project's CCP the
system will· search the current drive, and current direc
tory, then the current drive and the directory assigned by
the PATH command, (normally zero), then drive 'A'
current user, then drive 'A' PATH assigned directory
before complaining that it cannot find the file. The search
path is not as extensive as ZCPR3's, but doesn't require
any extra memory or disk support files.

LJUMP
The JUMP command allows the programmer to jump to
any position in memory and execute a program at that
location. The syntax for this command is:

18M., J8M Corp,; Z8aA· , Lie!. Inc., CP/M ~ ,
~~"'d1; ZCPll3'" & ZRDOS··,

........~I!!!!!I!!!!I.... EC1'ldOn,lnc., TurbO OOS·, Software 2000.
I , ..."...-~ tne_,T/MAJ<ERltr",T/~Co
\ COMPUTE~S ;NCC;::::l~::H::JRA;E::J

, 67 East Evelyn Ave • Mountain vteW. CA 94041 • (415) 962-0230. TELEX 4940302 .../.

JUMPEEOOH

All address references are assumed to be in hex.

The Computer Journal/Issue #22

j.RUN
The RUN command will run any program which is
currently in memory, without rel<?ading it from disk.

SYSGEN MYSYS.COM
(exit>

DIR
RUN

(system prompts:)
Destination Drive?

k.DO
The DO function is similar to the RUN command, but
allows the passing of parameters to the program residing
in memory.

9

m.HELP
The help command displays a user created HELP file,
one screen at a time. The help file may be created by any
text editor. The Help file must be named:

SYS.HLP

and must take into consideration the paging effect of the
READ command, which is used to print the HELP file. In
general use the SYS.HLP file should contain an index of
other help files. Once this Index is displayed the user may
enter the command:

AO> READ HELP.ERA
or

AO> READ STORY.TXT
STAT

(exit)
DO *.* $SYS

system attribute)

Only the name of the system base help file is predefined.
(which sets all files with the The HELP command may also be used in either the cold,

or warm boot autocommand structure for power-up and
reset screens or menus.

1. LOAD
The load command loads a named file into a given ad
dress:

LOAD 2345H MYFlLE.COM

in which the load address must be in hex, and the file
must be assembled, or compiled, to run at the address
specified.

n. A P, A C, and A S
These three control codes operate in the standard man
ner.

We will deal with all of the commands in greater detail
as we examine, the CCP source code. I wanted to give you
a basic overview of what we will be doing in case you
wanted to order the source disks before we got too deeply

10 The Computer Journal I Issue #22

In the equates above we assign symbols for frequently
used codes. The fIrst five equates are for control charac
ters we will recognize in the program. It is far easier to
remember a symbol than the actual numeric codes. The
next seven equates, starting at "WBOOT" will eventually
tell the program where to go to perform a function, or
find data.

In the next series of equates, which have been sim
plified from many versions of the CCP, we tell the
program what options we want to use, and what our ter
minal "looks like." In that our first version of this CCP
will be for internal use, we have set the RCPM equate to a
negative state. That is, we are telling the system that we
do not want a secure remotely operated CP1M system.

We then answer questions, in compuspeak, about the
maximum number of lines on our screen, (24), and the
symbol we wish to use to disable the page scroll feature.
These two equates, therefore, relate to the READ com
mand of the CCP.

The equates above give us a picture of what our
memory map is to look like. Remember that we created a
memory image of a 61K CP1M system early in our
discussion. MSIZE equates to the size of the CP1M
system we created.

Equate AMPCCP is set to DSOOH, which is where, in
memory, this program is to begin. Note that there is a
leading zero in the equate. Any time a hex number begins
with a letter we have to place a leading zero. If we did not
do this the assembler would not recognize the hex
representation as a number, but as some kind of strange
human symbol. All numbers must look like a number in
someway.

i "t

, 1\

Ichar-.ct : carr ••g. r.turn
Ichar.ct : lin_ f-.d
Ich.ract : tab
Ich.,..ct : ..-cAJI.
I c:her.ct : control-c::
le,,'a ...,.. boot .ddr•••
Iu.-r nua In hlg" nybbl_. dIsk In 10M
Ibdos function cell M'ttry pt
Ilndu_tr ••l blo. location
Id.-toault feb buff
rd.fault disk 1/0 buff __
;b._ of tp.

• .-.pro cpl••1 ze
Jeep loc:att.on fer .-pro 1 .. I"

, ..t to true if ccp 1. for .. B8S .Y"'t_
Inu.ber 04 lin.. on crt scr...,
,thiS fl.,g r.-v......... the d.-fault .-ff.ct

;... i.,_ us-:- nue.r .cc....tIl.
Hor dlr" ce-.nd: lIst '.ya ."d tdir
,for du" c~.nd:) i.t '.vs fi 1•• only
;d..-f.ult u nuaber for C~ fil ..

-""-.....
IIIH
83><.....
r.5H
IOEE_
5CH-.
81-

CR E.....
LF EQU
TAB EQU
ESC EQU
CTRLC EQU
WBlIlIT EQU
UDFLAG EQU
BOOS EQU
9]OS EQU
TFCB EQU
TBLFF EQU
TPA EQU

IOS!ZE ECU 61
Af'F'CCp EQU eDMeH
CBBlFF EQU 91 CJS+62H

RCPf'1 EQU NO
NL INES EQU 24
PGDFlG ECU • N"
P"tAXUSR EQU 15
SVSF"LG EQU 'U'
SOFLG EQU • S'
OEFUSR EQU iJ

two boolean symbols. A boolean symbol is a logic
operator which may have either of. two states, either
"true," or "false." A negative logic state is, in this
program, called "NO," and a positive logic state "YES."
These boolean elements are used for triggering con
ditional assemblies.

A conditional assembly is a section of program that
either will be assembled, or will not be assembled,
depending upon the result of an "IF" evaluation. We have
a number of conditional assembly sections in this CCP.
Some commands are considered hazardous in a Remote
CP/M system, (RPCM) , as callers may try to "crash our
system," causing damage to files, and possibly equip
ment. For our personal use we will not inhibit these op
tions.

ESC
S
"I or TAB key

WHAT NEXT? NOTABSSAVE

In the two lines of code above we define the states of

NO EQU "
YES EQU IIIFFH

involved. Of course these commands are only those
which are installed for demonstra40n purposes. At the
end of this series you will be able to design your own
command structures for the work that you do.

The CCP, A Detailed Look
The CCP we will be examining has a long and varied

history. If one had to trace its history it could probably be
said that the original author was Richard Conn. The ver
sion shown here has been assembled from a number of
"ZCPR" type CCP implements written for four or five
different assemblers, and untold numbers of machines.

This CCP, as with all of its forefathers is a public
domain program. All persons who claim copyrights to
any given version do so to assure that the program will
remain in the public domain, and will not be used for
direct commercial purpose.

In Figure 3 we begin to look at the source code, as writ
ten for the CROWE Z-80 assembler. As with most assem
bler files we begin with a long list of equates for terms we
will be using later in the program. As we progress I will
excerpt from the source code so we do not have to keep
turning pages to see what is being discussed. For now,
make special note of Figure 3.

Note that the first line of our me holds a line of com
ments which are described as T/MAKER Tab Settings.
The T/Maker editor is, again, supplied with many Ampro
systems as the only alternative to the CP/M ED.COM
program. Many users therefore will not have a copy of
WordStar or other editor. The target system in this
discussion is the Ampro Series 100. It therefore makes lit
tle sense to create files with an editor that is not com
monly available to Ampro users. A T/Maker file may be
read by any text editor as it produces a "pure ASCII
code." This means that there are no flipped bits nor con
trol codes hidden in the text file. T/Maker does have a
quirk, however. There is a 300 character "first line" in
the text me where tab settings are stored. The maximum
length a line may assume is 300 characters, in the CP/M
versions. This tab line gives most languages and assem
blers a fit! When using T/Maker be sure to save your files
without tabs. This is done by entering:

In the alternative, and what I have done, is use the
T/MODIFY program to change the default setting of my
T/Maker system. When asked if tabs should be saved
with the file, answer "NO." The top tab line in our
program is to set the internal tab settings for assembly
language programming. All that is required to set these
tabs is to place the cursor on this tab line and enter:

all tabs represented by this model line will be installed in
the system for as long as the power is on.

12 The Computer Journal I Issue #22

The MAXUSR equate identifies the legal number of
user areas the operator may request in a USER com
mand. The number of user areas in most systems is 16,
due to the way that user areas are defined in low
memory. Location 0004 contains a single byte which tells
us what disk drive we are on, and what the current user
number is. The format for this data is:

AMPCCP

AMPCCP

IF KAYPRO
EQU OEOOOH
ENDIF

IF AMPRO
EQU ODaoooH
ENDIF

From our previous discussion we learn that if the Am
pro BIOS did its own check for a restart command, and

As is noted, the two different entry points are met with
unconditional jumps to routines that either will process a
restart command, or will not attempt to process a restart
command.

Kindly note that our discussion does not follow the
physical layout of the source code listing, but rather the
logical path of program execution. That is to say that
while we will now discuss the routine "CCP" it is not the
next entry in the program listing.

A standard CCP has two entry points. The ORG
statement defines where the program actually begins as
the equate statements have no real meaning to the com
puter. Equates are just there to make life easier for us
humans. Ampro chose not to use the standard means of
entry into the CCP. This is primarily because their BIOS
does not check to see if there is a valid cold boot, or
"autocommand," installed in the position set aside for it.
The Ampro BIOS assumes that the CCP, or other
program will take care of this matter. In a normal
system such a check would be made. If no command was
noted for execution upon restart the BIOS would jump to
location ENTRY+3. In this way no time would be wasted
in determining whether to process this command. Ad
ditionally determinations must be made as to when to
execute such a command.

This failure to check for the actual presence of a restart
command causes the Ampro to always enter the CCP at
ENTRY, or 0800. We will retain this dual entry feature as
other programs may try to use it, being written to be run
on a standard CP1M machine. Again, this failure to check
for a restart command is why the "autocommand"
feature is lost in the Ampro machines when ZCPR3 is not
being used. ZCPR3 makes these determinations. We will
perform a test for a restart command ourselves, while
allowing standard CCP entry points.

To summarize, most systems would enter the CCP at
ENTRY+3 if they had no intention of processing a restart
command. They would enter the CCP at ENTRY if they
did want to supply a restart command to the CCP for
processing. Ampro systems always enter at the ENTRY
location, whether there is a restart command stored in
the BIOS or not. We will have to make up for this over
sight in BIOS design to allow the use of the standard Am
pro "autocommand," while retaining compatibility with
other CP1M systems.

;..-1: no d.-f.-ult c~nd

; proc__ pot:-.nti,.1 driaul t ca-and

; do not p"'oc... potential driault c~nd
CCP
CCPl

CCPI: xOR A
LD ICBIl*F).A

:
; ccp st..,-tlng pOint_,

ENTRY: JP
JP

APPLE][,][+,1II,1le &llc OWNERS
UPGRADE THAT TIRED 6502 TO 16 BITS"
65802 CPU ~

16 bll version of the 6502. Pin for pin IIld complelely IOflw_
~bllwith the 6502 CPU. You em 'WIde 'fOIl' AppIe)I.J1+.
IIIJII orIlc to I 16 bit compulr sll'llClly by repllClng the 6502
with the 6S802 wlUloulloslng the eblllly to 1'1II lIlY old soflw....

proDOS ORCNM OIsl $79.95) ~
Thli ProOOS version of CR:A/I"I COIl'III with the cOl'llCllele 65802
lnstnJctlon set. If you Intend to dewlope softw... for UIls new
CPU. then this PICk. Is I nmt.. Chosen by the cMslgners of the
6S802 IS the st.ldlrd 65802 1SSIIIlbI...
J6 Bit Upgrade Starters paCkage ~ JOQ QS
Thls!llCklgt Includn 65802 CPU IIld the ProOOS CR:A/I"I. All
you need to slrt.

Coming Soon' F<JUM. PASCAL~uw- ll. I'I(H!

TO (A)ER. SEN) O£<X (R I1CHY <RlER TO:

AlLIANCE COMPUTERS
PO BOX 408

CORONA, NY 11 368
POSTAGE AN) INSlRAHCE INCllDED. (715) 426 29CO

All CPtfs will be senl by Poslel ServIce, 1st c1_ IIlSlrlCl or lPS.
1nsIred. Plnse spectfy USPS or lPS.lPS doesn't deliver to PaS·s.
Soft.,... will be senl by lPS 81ue Lebel. If you wentlPS Next. Dey
AIr. Idd $5.00 (CPIfs only I). Mosl III orders senlout ... dey.
COO Idd $3.00. APCTs IIld FPO's _Icomed.
foret", oroers: PlIISImlkl peyment In US dOli.., drIwll on • US
benito Add $5 for RI9Isllred 11111 IIld Air 11111 Posllgl (lllCtPl
CINdI). No forei9l COO's.

PlEASE INCllDEY~ PHCH NJ1l(R WlTll <RlER

F1H

ORG AMPCCP

Our ORG statement is set to the value we assigned to
the AMPCCP symbol, which is OSOOH. In a larger
program we could present a number of different values to
the ORG statement by use of a conditional assembly.

which would indicate that the system was in user area 15,
(remember that hex starts with the number zero which is
a valid number), and drive 'B' was the currently selected
drive.

SYSFLG and SOFLG are options to display files of all
attributes, or system flIes. When given the "SYS," or
system attribute, the flIe will be displayed in a normal
directory listing.

The OEFUSR equate is the number which is to be con
sidered the default user, or directory number to be used
in a directory search for an operator specified flIe. This
value may be modified, once the system is running, by
the PATH command.

The Computer Journal/Issue #22

; ;
Tab Settings For T/Maker Editor

Hermit SoftMar.'s

Modified CROWE Asse~ler

Source Code File

(c) 1985 C. Thomas Hilton

Primary
HardMare: A~ro Series 100, lA CPU

(Original Little Board)
Syst..: CP/M 2.2

(Ampro Standard Version)

Function: A True Z-8S Replace-.nt Console C~nd Processor To:

1. Restore AUTOCOl'1l'1AND Function To AIlIpro 6lK CP/"
2. Enhance Standard CP/M Console Functions

Index:

11

CCP.CRW
CCPA.CRW
CCPB.CRW

CROWE Source Code File
CROWE Chain File
CROWE Chain FIle

LIST
TITLE
NLIST

'~ro Custa. CCP Base File'

terminal and 'type' custa.ization equates _

NO EQU S
YES EQU eFFH
CR EQU SOH
LF EQU eAH
TAB EQU liJ9H
ESC EQU ISH
CTRLC EOO S3H
WBOOT EOO HH
UDFLAG EQU lMH
BOOS EQU fr.)H

BIOS EQU eEEesH
TFCB EQU SCH
TBlFF EQU eeH
TPA EQU SltHJH
t'lSI ZE EQU 61
AI'1PCCP EQU 0D8fiKIJH
CBBUFF ElJU BIOS+62H

RCPt1 EQU NO
NLINES EQU 24
PGDFLS EQU 'N'
MAXUSR EQU 15
SYSFLS EQU 'U'
SOFLS EQU ' S'
DEFUSR EQU S

ORS At1PCCP

ENTRY: JP CCP
JP CCPl

;conditional logic boolean declarations
; character: carriage return
;character: line feed
; character: tab
; character: escape
;character: control-c
;cp/m Mar. boot address
;user num in high nybble, disk in low
;bdos function call entry pt
;industrial bios location
;default fcb buffer
;default disk i/o buffer
;base of tpa
;alllpro cp/m size
jccp location for a~ro series lee

;set to true if ccp is for a BBS syst..
; number of lines on crt screen
;this flag reverses the default effect
;maximum user number accessable
;for dir c~nd: list Ssys and Sdir
;for dir command: list Ssys files only
;default user nulllber for ca. fil_

process potential default c~d
do not process potential default comaand

Figure 3
'ill

The Computer Journal / Issue #22 13

ccp starting points
,

start ccp and don't process de-fault cOlHland stor.c:t

CCPl: XOR A ; set no de-fault cOlHland
LD (CBUFF),A

start ccp and possibly process de-fault ca.a.nd

CCP: LD
PUSH
LD
RRA
RRA
RRA
RRA
AND
LD
CALL
CALL
POP
LD
AND
LD
JR
CALL

NLOG: LD
OR
JR
LD
OR
JP
JR

CBPROC: LD
LD
LD
LDIR
XOR
LD
JP

SP,STACK
Be
A,C

SFH
E,A
SETUSR
RESET
Be
A,C
eFH
<TDRIVE), A
Z,NLOG
LOGIN
A, (CBBlFF)
A
NZ,CBPROC
A, (CBUFF)
A
NZ,RSI
RESTRT
BC,9
..... ,CBBlFF
DE,CBUFF

A
(CBBUFF),A
RSl

; reset stack

;c=ustrr"/disk nullber (5_ loe 4)
;extract user nullber

; set user nUlMJer

;reset disk syste.

;c=user/disk nullber <.- lac 4)
;extract default disk drive
;set it
;skip if S ••• already logged
;log in de-fault disk
; is there syst_ cOlHland to execute?

;if not zero there is a ca.aand

Figure 4

found that there was none to execute, we would have en
tered the CCP at ENTRY+3. At ENTRY+3 we would
have been ordered to jump to CCPI, which is the entry
point when we do not want to process a restart command,
or there is none to execute. Both circumstances have the
same meaning.

When a command is entered at the prompt, it uses
BDOS function 10, or input a line of text from the logical
console device. This function call requires that a buffer
be defined, and that the first character in the buffer tell
the DOS what the maximum number of characters to ac
cept should be. Function 10 will return to the caller when
either this number of characters is reached, or the
operator signals the end of a line by pressing the
RETURN key, or control-M, (~M).

8 ..
8UFLEN..

LD OE.MBUFF ; lo.d th• .c:idr... of buff.,. in DE p •• r
LD Be. ttl ; lo.ad function n~ into Be p •• r
CALL {ltHSH ; ••k. ttt. DOS c.ll by Ju.plnq throuql'l

; loc.t.on 5. p.q••

represents the maximum length of the input command
line. This could have just as easily been stated as:

80BYTEMBUFF:

When DOS function 10 has done its job, returning only
when the maximum number of characters has been in
put, (80), or the operator enters a Carriage Return, <CR),
it will place the actual number of characters input in the
byte at location CBUFF. For entry into the CCP at CCPI
this byte, which contains the actual number of characters
in the returned command line is our focal point:

With this byte as the ftrst byte in our input buffer we tell
DOS function 10 to look here for the maximum number of
characters by saying:

; ••x 1 buf f.,. l"'gth
:1II.lo:1-.aM buff.,. l."gth
:nUMCtw of ..".lld ch.,..act.,.. in c:e-and lin.
;d_f.ult (cold boot) c~d

t!l ;c~.nd strIng t"'.ln.ator
BUFLEN-C.-CIElUFF)+1 ;tot .. l IS ·bufl..,· byt••

9:UFlEN EQU
r1BUFF: eYTE
CEcUFF: BY TE
CIBUFF: DATA
CI&UF: BYTE

RSRV

A type of buffer for DOS function 10 is shown above, and
is from our CCP. The equate BUFLEN states that the
byte stored in the BYTE at MBUFF should be 80, which

; st.rt ccp .nd don"t proc.... d.f.ult c~,
CCPt: tOR A

lD (CBlFF).A

In this application of the exclusive OR logic function we
are exclusive ORing the 'A' register with itself. which

The Computer Journal! Issue #22

CBUFF it has a value of actual characters in the restart
command line. Arnpro has limited this amount to just
eight characters. At NOLOG we sneak a peek at the byte
which is to tell us how many characters are in the restart
command. We load the accumulator, or 'A' register, with
that value. We then do a logical OR with the accumulator,
or OR it against itself. We do this to see if there is a zero
value in it. If there is then the 'Z' flag will be set after the
OR function.

If the 'Z' flag is not set then the value was not zero and
we want to jump relative to where we are, upon a nonzero
returned value, to the location represented by CBPROC.
"CBBUFF" means "cold boot buffer," and "CBPROC"
refers to cold boot processing.

Now if there is a zero value in the BIOS restart com
mand buffer, (CBBUFF), we check to see if there is a
command in CBUFF, which is the CCP command buffer.
If there is a command in this buffer then we will jump to
RSl, else we will jump to RESTRT for normal CCP
processing.

It is important to note that we are checking two restart
buffers, why? Well, in my system you can have a com
mand in the cold boot buffer and a command in what I
call the warm boot buffer. The BIOS is loaded from disk
only upon a power-up or reset condition. The CCP is
loaded upon every warm boot. In this way it is possible to
configure the system, using either or both restart com
mand potentials, to assure that the system never reaches
the command line. That is to say that even if the power
goes off the system can recover and reset itself. This is
important where reliability is at issue.

From this point we again have a fork in the processing
road. If there was a cold boot command lurking in CB
BUFF then we have to discuss its processing. If there was
a command in CBUFF then we have to discuss it, and
then discuss what to do if there were no restart comman
ds at all to deal with. Let us begin where we jumped off to
do the cold boot command, which would have sent us to
CBPROC.

15

LD CBBlFF
LD OE.CBUFF
LOIR

We next load the 'HL' pair with the source address of the
data we want to move, CBBUFF. We cannot use the
AUTOCMD label as it is unique to the BIOS source code.
We could have used it here as we had defined it with the
value of EE62H instead of using CBBUFF. But, we are
concerned with the Cold Boot BUFFer. The 'DE' register
pair is used to specify the DEstination address for our
move. The destination address is CBUFF. CBUFF is
used for all command processes in our CCP.

Having defined the number of bytes to be moved, by
placing this number into the 'BC' register pair, the source
address of the nine bytes to be moved in the 'HL' pair,
and the destination of these bytes in the 'DE' pair, we are
ready to make the move. The move is made by uttering
the magical incantation "LOIR." (Heyl Give me a
break! After all that set up such an anticlimactic ending
needs something. OK, so it isn't magic. I bet you are the
type that pulls back the Wizard of Oz's curtains just to
ruin the show!)

-:OR A
LO (CBBUFF1.A
JP RSt

So, party poopers and all, the move has been made, and
the command hidden away in the BIOS is now in CBUFF,
complete with the number of characters in the line. We
now zero the accumulator with the exclusive or com
mand, and stuff the zero value into CBBUFF, where we
just moved our restart command from.

Sidekick for CP/Ml

Write-Hand-Man
Desk Accessories for CP/M

NEW! Now with automatic screen refresh!

, ~

CBPROC: LO Be.'1
LD H..... CB9l.FF
LO DE. CBUFF

LDIR

'OR "
LO lCBBlFF").A
JP RSl

At CBPROC we perform a transfer of the restart com
mand string from CBBUFF down into CBUFF. We do
this by using a Z-80 specific assembler code, "LOIR." We
know that the Arnpro "autocommand" in the BIOS allows
only an eight character file name. We also know that, like
the CBUFF format, it has a number which indicates how
many characters are in the command line.In the LOIR
instruction the 'BC' register pair, (think of them as the
"byte counter"), is loaded with the maximum number of
characters we want to move. In this case the number of
characters is nine. The actual BIOS autocommand buffer
looks like this:

ORG BIOS+602H
AUTOCHO: BYTE •

DATA •
BYTE II

;nu"'~ of ch ..r.-ct In c~nd

;bl ..nk ce-.nd f.l. nOl_
otwrlU noAt 1 nq null ch.r.ct

Suspend CP/M applications such as WordStar, dBase, and
SuperCalc, with a single keystroke and look up phone
numbers, edit a notepad, make appointments, view files and
directories, communicate with other computers, and do
simple arithmetic. Return to undisturbed application! All
made possible by Write-Hand-Man. Ready to run after a
simple terminal configuration! No installation required.

Don't be put down by 16 bit computer owners. Now any
CP/M 2.2 machine can have the power of SiMIcidc.

Bonus! User extendable! Add your own applications.

$49.95 plus tax (California residents), shipping induded!
Volume and dealer discounts.

Available on IBM 8 inch and Northstar 5 inch disks. Other 5
inch formats available with a $5.00 handling charge. CP/M 2.2
required; CP/M 3 not supported.

COD or checks ok, no credit cards
Poor Person Software

3721 Starr King Circle
Palo Alto, CA 94306

tel 415-493-3735

'.

, ,
t:JRe: AUTOCMO+tliJ

In this case we are ignoring the terminating null as we
know how many characters there are we want to move.

Writ..Honci-Mon 1T~lNl'k 01 Poor P~ ~. CP/M IF....."' 01 Di8iQl
IleNKh.s_ ndorNrte 0I11or11nd 1.-.-..., _ ndorNrte 01~T_W_
ndorNrte 01 MIcropro, SupetUlc • ndorNrte 01 Sorcim.

14 The Computer Journal / Issue #22

produces a zero figure. Any time a value is exclusive ored
with itseH a zero amount is returned. We could also have
said:

LD A.C
RRA
RRA
F<RA
RRA
AND eFH

Ic-u.... /di.k nu.lMr <... lex: 4)
; •• tr.ct user nu-D~

What we have done is shift the user number bits four
places to the right, so they are now the four least
significant bits:

where X means don't really care. We now do a logical
AND with the lower four bits, which house the user area
code, which has the effect of making all the X marks zero
values.

Now we move the value of the diskluser byte, which now
only has the user number, into the 'E' register from the
accumulator, or 'A' register. We make this move in
preparation of calling a subroutine to deal with the user
number.

;set the u value In oMe4H
;r_t disk .y.t_

E,ALD

CALL SETUSR
CALL RESET

EEFORE: UlJUUDDDD RRA
llUl'<1N6: nA..JlJlJODD RRA

XXUUUUDD RRA
.(XXIJUlAJD RRA

AFTER: xXU:lJlJUU

LD A,O

with the same result. OUr next instruction states that we
are to place this zero value into the byte at CBUFF. When
we leave this instruction, a zero value will be in the byte
at CBUFF. Why did we do this? Well, the quickest way to
detennine whether there are any characters in the com
mand line is to check and see how many characters DOS
function 10 says should be in the command line. Now if we
put a zero value in CBUFF, whose function is to hold the
number of characters in the command line, then when we
check we will be told the command line is empty. IT the
command line is empty, as CBUFF tells us, then there is
no use trying to execute whatever is in the command line.
n is empty. Computer psychology at work friends, if you
can't dazzle them with your brilliance, dazzle them with
your bul1sN$t.

Having gone 50 miles in a two line program segment we
then drop into CCP, where we would have come if we
wanted to execute a restart command. Yup, now we are
at where we didn't want to go anyway, and took a two
liner "short cut" to get there. Oh well, that's high-tech.

The Ampro "autocommand" or restart command is
located 62b bytes above the BIOS entry point. Just like

These two calls set the user number and disk number,
which we received from the BIOS, into the storage area
at 0004H and reset the disk system so that everything is at
a starting point for further operations. This setting things
up is called "initializing the system."

We then do almost the same thing, separating the disk
number now from the user number. First we get the
original value from off of the stack, put it in 'A,' and then
do a logical and on the lower four bits. This is essentially
the same way we did the user value except that the value
we want is already in the lower four bit position.

Now it could be that the system drive, disk 'A,' whose
number is zero, is already assigned. The action of AN
Ding out drive value would set the 'Z' or Zero Result nag
if it was. The system, or default drive will always be the
lowest drive number. If this is in fact what bas happened,
that the drive number is already zero, then we do not
have to log in the system drive. Uthe value isn't zero then
we have to assign the new drive, or 'log it in.'

Now then, remember all the discussion about the
restart command? We have to deal with the possible ac
curence of a restart command now. From our discussion
above, can you determine how we will deal with this
detennination?

'if not zero there t •• c~

'C~..... /distc~ c_ lex: 4)
, ..tract dMlt di.k drive,..t it
,pip if •••••1r-..dy 109C)ed
1109 in def.alt diu

A. (C8aFF')
A
NZ.C~

At' (CkF'F)
A
NZ.RSI
RESTRT

POP IIC
LD A"C
AND ...
LD (TDAIVE),A
JR Z.....09
CALL LOBI"

.....00: LD
OR
JR
LD
OR
JP
JR

I
, .t.-t ccp .mt ~.ibly proc_. -.f.ult c~
I
CCP: LD SP.STAOC .r....-t. .toK:k

PUSH IIC
LD A.C 'c~.-r/di'" nulMMr (_ 1m::: 4)
RRA , .. trACt u.... nu-ber---AND ...
LD E .. A ,..t u... n.....m.r-

Having arrived here we have to explain some assum
ptions we have made and thus far ignored. The first of
these is that the BIOS is supposed to place the current
disk and user area in the 'C' register before jumping to
theCCP.

However, the first thing we do when we actually get in
to the CCP is create our own STACK. A stack is a place
where you stuff things just to get them out of the way,
such as the place to return to after a subroutine CALL
and data you want to preserve. Astack builds down, and
you "PUSH" things onto it, and 'POP" things off of it. In
our CCP we have memory reserved for these stack fun
ctions called, of course "STACK." The register 'SP," into
which this 16 bit value is loaded is used by the processor
as well. Having defined where our closet of values is,
where to stuff things, we immediately stuff the disk data
sent to us in the 'c' register for safekeeping.

Now remember when we were talking about USER
areas a while ago. No? Well go back and look, I'll wait, I
mean I've nothing better to do than wait on you, just so I
can confuse the 'ell out of you again, so go ahead... go
back and reread that section..... I'll wait......

I am assuming that you now know that the user area
number is held in the upper portion of the disk/user byte
at location four. Now if a byte is eight bits, then the upper
four bits represent our user area. We flfSt move the
diskluser byte into the 'A' register, from the 'c' register
and then use the command Rotate Right Accumulator,
<the'A' register>, to extract the user number.

16 The Computer Journal / Issue #22

LD A, (CBlFF)
OR ..
JP Nl,RSl
JR RESTRT

We do the same thing as we did for CBBUFF, that is
check the byte holding the number of characters in the
text string. If it is a zero then there is no command to
process. Anonzero value indicates that there are charac-

If there was a restart command in the BIOS we would
have jumped to CBPROC, which we just finished
discussing. At CBPROC we moved the command from
the BIOS into CBUFF, in the CCP, and jumped to RSI.
Let us now assume that there was no command in the
BIOS to be processed. In this case we drop into the code
that makes a check to see if there is a command in
CBUFF.

Now why did we do that after we just went to so much
trouble to move it down where \\[e could work on it?
Remember that the standard Ampro BIOS does not per
form its own check for a restart command in the
AUTOCMD slot. Because it does not do this checking it
self it does not make the decision as to jump into the CCP
at ENTRY, or ENTRY+3; "to process or not to process,
that is the question." The Ampro BIOS always jumps into
the CCP at ENTRY, which is the process a restart com
mand.

The BIOS is loaded from disk only from a power on or
reset. Yet it loads the CCP back into memory after every
warm boot function. Awarm boot may be executed after
a program is run, or when we press control-C. Now if the
Bios always jumps into the CCP at ENTRY, to process a
restart command, our restart command will be detected
and executed every time the CCP is entered.

The object of the CBBUFF processing is to execute a
restart command only once, and that is only upon power
up or reset. To prohibit re-execution, called "reentry,"
we put a zero value in CBBUFF. The next time we come
through and check this position we will be told that there
is no restart command in the BIOS, hence we will not try
to process it.

Having zeroed out the BIOS restart command we jump
to RSI where a normal command in CBUFF, the CCP
restart command buffer, is processed. Before we go to
that routine, however, let's keep in mind what we have
just done with the BIOS restart command and examine
the normal CCP restart functioning.
I heard that! Someone said, "why don't we just change
the Ampro BIOS so it doesn't create all these problems
with a simple restart command?" Well, Ampro had a
reason for doing a direct ENTRY jump into the CCP. In
the interests of compatibility we don't want to upset
things anymore than we have to. When we do our in
dustrial BIOS this is an option we may explore. But let's
not get ahead of ourselves. For now this is the way we
have to do things.

Let's review for a moment. At NOLOG we made a
determinationas to whether there was a restart com
mand in the BIOS. Review the code provided below.

BIOS AUTOCOMMAND: Executed Once, Set By
Ampro CONFIG.COM

CCP RESTART COMMAND: Executed after every
possible programtermination except a reset or power
loss. Set by a user program or DDT

It is clear that we could produce a system that was ex
tremely reliable and able to reset itself after an interru~

tion of power or other fatal error, as well as restart itself
after program termination or process sequence. We are
well on the road to a totally automated system that is both
reliable, and intelligent.

Now then, if no restart commands are detected, <all
roads lead to RSl eventually), then we must get a com
mand from the human. This is done by a jump over CB
PROC to RESTART, where all CCP roads return.

I
; pra-pt u..r .-td input. c~ Ii". fra. hi_

I
RESTRT: LD SP,STACk ,r-t: at.ack

lOR ..
LD cC8l.FF) ,A

RESTRT is the CCP's internal restart point. When all
internal functions have been completed the CCP will
return here to begin a new sequence. This sequence is a
simple procedure of getting your command from the
command line, processing the command, if it is an inter
nal function, or loading the file you specify, and tran
sferring control of the system to that program.

When we entered the CCP at CCP we set up a local
stack, and repeat that process again here, why? Because
the stack is kept small, and the processing of any restart
command is a sequence all of its own. When we reach this
point we are in the "inner sanctum" of the CCP where we
start anew. We set up a new stack, (actually we just reset
the old one as if it were new, and clear our character byte
at CBUFF). In this way we have a fresh stack and tell
anyone who may ask that there are no commands to
execute, everything that needs to be done has been done.
We may now begin a new day.

ters present, a command to execute. At this point we
would jump, if there were a command, to RSI, where all
roads for execution of a command lead.

Now remember that I said that the CCP is reloaded af
ter every warm boot, and the BIOS generally only once
per session? Now if we placed a command line in
CBUFF, the CCP command line, and wrote it to disk,
then every time the CCP was loaded it would execute our
command, wouldn't it? Yes it would. The fIrst thing we
check is to see if there is an initial restart command in the
BIOS. If there is we move it into the CCP and execute it,
over-writing any command that may currently be in
CBUFF. Once we move the BIOS restart command,
however, we zero out the character byte so we do not re
execute that command. But, every time the CCP is
reloaded, had we a command written into the CBUFF
command line in the CCP it would be executed after
every warm boot. It would be impossible for the system
to ever reach the "AO> " prompt as it would always take
a priority command from the restart procedures.

Our priority for automation of our system could be
stated as:

,if nat z.,..o th..... is • c~d

A, (CB8t.FF)..
NZ. CIIPtlOC
A, (CBlFFJ..
NZ.RSI
RESTRT

~: LD
OR
JR
LD
OR
JP
JR

The Computer Journal/Issue #22

;
; pra.pt user anq input c~and line frc. hi.

11

;
RESTRT: LD SP,STACK

XOR A
LD (CBUFF) ,A

print pra.pt (du»

CALL CRLF
CALL GETDRV
~DD A,' A'
CALL CONOUT
CALL GETlISR
CP 18
JR C,RSH
SUB IS
PUSH AF
LD A, , I'
CALL CONOUT
POP AF

RSfiHiJ: ADD A, '8'
CALL CONOUT

re..d input 1 ine fro. user

RSf!HHiJ: CALL REDBUF
;
; process input line

RSl: CALL CNVBl.F

CALL DEFDttA
CALL GETDRV
LD <TDRIVE) ,A
CALL SCANER
CALL NZ,ERROR
LD DE, RSTCCP
PUSH DE
LD A, (TEI'1PDR)
OR A
JP NZ,COt1
CALL ctmSER
JP NZ,COt1
LD A,(Hl...)
INC
LD H,(......)
LD L,A
JP (HL)

;reset stack

;print prOlllPt
;current drive is part of pra.pt
;convert to asci i a-p

; get user nu.tJer
;user < 18?

;subtract IS froa it
;save it
;output 18's digit

;output l's digit (convert to ascii)

;input ce-aand line fro. user

;capitalize ca...nd line, place ending 8,
;and set cibptr value
;set tbuff to d.. address
;get default drive nu.aer
;set it
; parse ca....nd n.... free ca..and line
;error if ca..and na_ contains. '?'
;put return address of ca...and
jon the stack
; i s co_and of for. ' d: ca....nd· ?
;nz=yes
;i-efi ..tely
;scan for ccp-r_id....t c~nd
; not ccp-resi d....t
Jfound it: get low-ord.... part
Jget high-order p..rt
;storl! high
;store 10M
;execute ccp routine

entry point for rest..rting ccp and logging in default drive

entry point for restarting ccp without logging in default drive

;
RSTCCP: XOR

LD
CALL

;

RCCPNL: CALL
LD
SUB
LD
OR
JP
JP

A
(CBUFF),A
DLOGIN

SCANER
A, (FCBFN)

HL,TEHPDR
(HI...)

NZ,ERROR
RESTRT

;log in default drive

;extract next token fro. command line
;get first char of token
;any char?

Figure 5

18 The Computer Journal I Issue #22

In a similar manner we call a routine that returns only
the current user number. For a hint at how this is done,
basically, refer to our discussion of the entry point CCP
early in this article.

What follows is a simple binary to decimal conversion
routine. We may not just use an offset value to convert
the user number into a printable form, as we did for the
drive number, as the user area is represented as a
decimal number, instead of a letter. Additionally, we
have more than one digit to deal with. If the number is
less than 10 we do not have to formulate the "tens" value,
which must be printed first. (In the number 10 the "I" is
the tens value.)

If the number is greater than 10, then we subtract ten
from it, which will leave us with the "ones" value as the
remainder. This remainder will be left in the ac
cumulator, or 'A' register. As the ones value must be

If there was a restart command we would have jumped
over this program segment. We are assuming that we
want to get a command from the human operator. Com
puters are so willing to please.....

The first thing we do is clear a line on the terminal, (our
ego demands a clear work space). We clear a line by sen
ding a RETURN, (CR, which sets the cursor to the begin
ning of a line), and a LINE FEED, (LF, which moves the
cursor down a line), to the terminal. To make life easy for
the human we include a LF every time he, or she, presses
the RETURN key.

In the interest of brevity, as we are running out of space
for this issue we will highlight what each subroutine does.
We will discuss the various support routines in detail
later. This time I only want you to understand the
primary CCP function loop.

GETDRV returns the binary number of the current
disk drive. We then add the value of a capital "A"
character, (41H) to convert the disk drive number into a
value that can be printed by the terminal. If the disk
drive number is "0," then when we add the number for a
capital "A" we have the value of the ASCII code for" A,"
as we have added nothing to it. If the drive number was a
"I" for drive "B" then the base figure of 41H would have
one added to it, which would be the code for "B," and so
on. A standard CP1M system can have up to 16 disk
drives, represented by the letters"A" through "P..

At the assembler level, and unlike BASIC, just because
we print something doesn't mean a CR/LF sequence is
also printed. With the printable value of the current disk
drive in the accumulator we call the subroutine CONOUT
which sends our character to the terminal. At this point in
time just the letter is printed. We process so fast,
however, that when the prompt is printed it appears as if
the entire prompt appears at once.

; prtnt p,.~t (du>1
I

;output l's digit
;(convert to ascii)

;output 10's digit

linput c~nd line frc-. u

Icapitalize c~nd line, place M"Idin9 .,
land ..t. cibptr value

,get default drive nulllb~

I ...t it

Ip.r •• c~d n ... f,..o- c~ line
I __ ro.- If c~d n&_ cont&ln••• ..,.

CALL GETDRV
LO CTDRIVE),A

CALL SCAHER
CALL Nt. ERROR

I

r , • .cI Input Itn. fro. u...,.
I

~: CAt.L REDBUF

I proc..... input 11 ne
;
RS I: CALL CNVIlUF

The first step in preparation -is to set up a buffer for any
and all data from the disk, or terminal.

Then we save the value of the driv'e we are currently on,
so we can "remember" where to return after we perform
the command to be executed.

CALL CONOUT
Note that if the value of the user number was deter

mined to be less than 10 we would have come here and
made this single digit conversion. .

CALL DEFDf"A

The first thing we do to our command is convert all
characters into uppercase format. In this way the
operator can enter command either in upper, or lower
case. We also set a pointer, CIBPTR to point to the first
character in our command. We are now ready to get to
work, after a little bit of preparation.

Because we are assuming that there were neither a
restart command in the BIOS, or in the CCP buffer, to
execute, we just have to have a command to process. We
have printed the "AO " portion of the prompt on the
screen. REDBUFF supplies the ">" portion of the
prompt while it waits for our input. This uses the same
DOS function 10 sequence we have already discussed.
The buffer for this input is at MBUFF, whose byte con
tains the maximum number of characters to be accepted
from the console. When this number of characters has
been received, or a CR is entered by the operator, the
number of characters actually in the command is placed
in CBUFF. The characters themselves begin at CIBUFF.

Now then, whether we had a command in the BIOS, one
in CBUFF when we entered the CCP, or we just received
one from the operator, our varied paths gather at RSI.

printed after the tens value, we will save this remainder
on the stack.

LD A,'l'
CALL CONOUT
POP AF

Having saved the ones value, and because we know that
the maximum number of drives can never be more than
16, we just print the character"1" on the screen any time
the user area is greater than 10. Having the prompt now
appearing as "AI" we must print the remainder, or ones
value. So let's get it back, by popping it off the stack, and
make it printable by adding the lowest possible number
code to it. The ones value is converted into printable form
in the same manner as the disk number, except that the
offset is now the character "0."
RSOO: ADD A,'O'

l
Iprlnt pra.pt
Icurrt dr-Iv. ia part at pr-a.pt
'can~t to aeeii .-p

loutput I'. digit (conv.... t to aeell)

;MJbtr.ct •• 4"011 It
, ••". lt
loutput ••'. dlglt

Iq_t u nu....,.

•u.""" < ••?

GETUSR

",
C. RSelO

'10
AI'
A. "I"
CONOUT
AI'
A. -S'
CONOUT

CALL CRLF
CALL 9ETDRV
ADD A •• A'
CALL CONOUT

CALL
CP
JR
SUB
PUSH
LD
CALL
POP

RSee: AOD
CALL

The Computer Journal/Issue #22 19

All commands must conform to a very standard format
for primitive interpreters. This is the format of VERB
OBJECT OF VERB. SCANER, we may assume for the
moment, does a quick syn~ check to assure that all
commands are properly formed. It checks to see if there
is a disk drive specifier, (if the command is to be found on
a different drive), and assures that the user isn't trying to
do something outrageous. If all is well SCANER returns
with the 'Z' flag set. If there is an error, or an object ap
pears before the verb, the 'Z' flag is not set, and we are
routed to an error handling routine.

processing, we can check for another drive assignment,
and assume that the verb portion of the command is a file
name. If the value of TEMPDR is other than the system
drive, drive '0,' then we jump directly to the COM file
load and execution routines.

If we do not get a clue as to what type of command it may
be, then we must check to see if the verb is an internal
command. CMDSER, (CoMmanD SEaRch), will search
a table of key words, or verbs for a match with the verb in
the command. This table is constructed as follows:LD DE.RSTCCP

PUSH DE
;put ,...tu,.n .dd,.. ••• 04 C~d
Ion th...t.ck

r:ALL CHOSER
JP NZ. CQI1

:~~ for ccp-..... ld...,t C~d
;not ccp-r...d."t

SCANER will set TEMPDR, (TEMPorary command
DRive), if the command, or verb to be executed is
specified to be on another disk drive. To avoid needless

When we "CALL" a subroutine, the "way home" to the
caller is placed on the stack. When a RET command is
seen the top two values on the stack are assembled into a
16 bit address, and the processor executes a jump to that
assembled address. The CCP also has to be able to find its
way home so it can accept another command from us;
this is, after all, its function in life. Internal commands
are also called as subroutines, and have to find their way
home. In the code above we set the return address on the
stack so that when a RET command is encountered
program control is sent to a recovery routine.

LD
OR
JP

A. (TEP1POR)
A

HI. cOPt

;I~ ca-aAnd of for. 'd:c~d'"

;nz·y...
:l-.di.t.ly

DATA 'COMMAND'
WORD COMMAND
DATA 'ANOTHER'
WORD ANOTHER

The DATA contains the literal verb string. The WORD is
a label representing the address of the concerned'routine.
Remember that a binary WORD is a 16 bit value which, in
this case, represents an address in memory. If a match is
found between the command verb and a verb string in the
command table, the end of the character by character
match will be the last verb character, plus one, (as if
looking for another character to match). Hence, on
return, if a matching verb was found, the 'HL' pair will be
pointing at the first byte of the address of the verb's ac
tion routine. If no match is found then the command verb
is assumed to be a file name to be fetched from the

INTELLICOMP
Introduces

Inexpensive
8-10068008
CPU Board

The card pictured above is $65 for the bare board, $210 for the kit, or $265 assembled and tested.
It uses only standard parts. A sample BIOS for CP/M 68K is available on disk for $20. The board works
fine with Digital Research Computers 64K RAM boards and semi disks. A detailed description of the
board appears in Issue 16 of The Computer Journal.

For additional information call IntelIicomp, Inc. at (614) 846-0216 (evenings best time) or write to :
Bruce Posey

Intellieomp, Inc.
292 Lambourne Ave., Worthington, OH 43085

20 The Computer Journal / Issue #'J:J.

current disk drive, and executed. If an internal command
verb is matched then we must jump to the verb's
subroutine for execution.

I
I .."try pOint for ,...t.-tlnq ccp .and loqqinq In d..-f.ult dr'"lv.
I
RSTCCP: lOR ..

LD (CBlFFl,A
CALL DLOOIH Iloq In d lt dr • .,.

'1

, t

l.-xt"ACt n.-t tokM'\ f,.o. ec...nd I in.
lo_t f i ...t en.... of tok."
IAnY en.,.?

HL.. TEl'PDR
<HL.1
Nl.ERROR
RESTRT '

I
; ...,try point fort.,-tinq c:c:p .ithout loqqlnq in d.-f.ult d
I
FlCCPIoL: CALL SCANER

LD A. CFCIFN)
9UB
LD
OR
JP
JP

ways of trying to re-execute the restart command. In an
over-kill mode I went in and put "dummy traps"
everywhere to make sure that the two restart commands
are only executed when and where they were supposed to,
every time they were supposed to. When reliability is an
issue, a little redundant code can sometimes help....

Having once again managed the restart commands, we
want to reassign the system disk drive, drive'A' or zero,
as the current disk drive. We then "fall into" RCCPNL,
which may also be used as a CCP return point when a
command does not wish to reassign the disk drive being
used in the execution of a command. You will note that
there are sections of code that may not always seem
needed in my CCP. This is because I modify it for nearly
every specialty system I create. When we begin
designing our own commands, you may see why these
sections of code are left here.

NEW·DOS Disks Available
An AMPRO for.nat 5114 DSDD with the files for the

Crowe assembler and the CCP is available from The
Computer Journal for $10 postpaid. Inquire about other
formats.

Additional disks with the BDOS and BIOS portions of
NEW-DOS will be made available when these portions
are published. Anyone making extentions to NEW·DOS ~r
implementing it for other systems are urged to send thelr
material to TCJ so that it can be shared with others.

Tom is preparing a user disk library for the AMPRO
little board, and the disks will be distributed by TCJ.
Watch for more details in the next issue!

Well, this pretty well covers the main loop of the CCP.
In Part Two we will discuss the various support routines
called by the main loop. If we have the space we will also
begin discussion of how to design your own CCP com
mands to suit your specific application.

I would recommend that you acquire the CCP source
code, and do some snooping before we meet again. By the
time we finish with the CCP section of our series you will
have a great understanding of this module, and be able to
modify it to suit yourself, with far more computing power
than any standard system could have. Remember that,
unlike the CCP's big brother ZCPR3, our system does not
require any additional memory space, nor direct support
files on your disk. When thinking of all the fun we can
have reworking the CCP, just think of what can be done
when we begin discussions upon the design of the BIOS
and DOS systems! •

Ifound it: ~ 10lr"'al"'dM" p~t

19_t high-or-der P..t
._tore hlQh

••tore Ie..
' ••.cut. ccp routine

LD A, c....)
INC HL.
LD H, (H...l
LD L,A
JP (....)

Surplus Parts
Resource

We then load the low order byte of the address into the 'A'
register, from memory, increment 'HL' which then poin
ts to the high order byte of the 16 bit address, into the 'H'
register. We then load the low order byte stored in the 'A'
register into the 'L' register. Having loaded the address
of the verb's subroutine into the 'HL' pair we jump to
where HL is pointing. Because we have placed our "way
home" on the stack we can return to the main loop of the
CCP by executing a RET instruction.

Here's a catalog any serious computer tinkerer needs. It's a
treasure-trove of stepper motors, gear motors, bearings. gears,
power supplies, lab items, parts and pieces of mechanical
and electrical assemblies, science doo-dads, goofy things,
plus project boxes, lamps, lights, switches, computer furni·
ture, and stuff you might have never realized you needed.

All at deep discounts cause they are surplus!
Published every couple of months, and consecutive issues
are completely different. Send $1.00 for next three issues.

JERRYCO, INC. 601 Linden Place, Evanston, Illinois 60202

RSTCCP is where we return from most internal com
mands. When a me is used as the verb the program
generally exits to the warm boot loop which rewrites the
CCP and enters it where we originally entered. For those
functions that return here, the first thing we do is make
damn sure that the command line character byte is
zeroed out. We don't really need to do this, as we will just
reset it again when we get backup to RESTRT, but some
programs return to the CCP, and do not terminate to the
BIOS warm boot function, or have mystical, magical

The Computer Journal/Issue #22

Variability .In The 80S C Standard Library
Porting 80S C To CP/M 86

By Donald Howes

21

This overview is aimed at C programmers who don't
own a copy of the BDS Ccompiler, but still wish to be able
to compile some of the large number of programs which
are available from the group, and not become old before
their time in doing so. U you are like me <I do most of my
work in CP/M-86, using the SuperSoft C compiler), the
following scenario has occured at least once (and
possibly, many times), On getting your latest software
disk from the group, you immediately try to compile a
program. Everything works through the compiler, but
then comes the link step (maybe an assemble step fIrst,
but why make things overly complicated), You think the
machine is having a fit, but it's fascinating, who could
have thought that a three hundred line program could
have generated four pages of link error messages! !

Ok, maybe that is a little overblown, but it really can be
a problem getting a BDS Cprogram to link and there are
some programs which I had given up on trying to get to
work (if you want to know, Roff is one, I really wasn't
lying about the four pages of linker errors). I've managed
to solve the problem in a remarkably easy way. I've
bought a copy of the BDS C compiler. This, however, may
not be a viable alternative for people who are either short
on cash, or don't have a machine which will run both
eight and sixteen bit software (I use a CompuPro
(Viasyn, who's Viasyn?) 8/16-A), Hopefully, this over
view will help to alert those people who do not have ac
cess to a BDS C compiler to the variations in the "stan
dard library". You will notice the quotes; one thing that I
did fmd out is that there really isn't such a thing as a
standard library. What I was able to do was compare the
BDS C library functions to the two CP/M-86 compilers for
which I have documentation (SuperSoft and Digital
Research) and note the variability over the three com
pilers. The SuperSoft documentation states that they
have attempted to stay as close as possible to the Unix
library, while Digital Research is missing a number of
Unix Cfunctions and have implemented some specialized
functions (there are three variations on creatO, for
example) to take the place of a single Unix function. With
this type of mix (admittedly, not a scientific sample, but
you do the best with what you've got) I was able to break
the library functions up into three types. First, there are
the functions which all three compilers agree on. Given
the differences between the compilers, I felt that these
should represent as close to a "standard" function as
there is. These functions will be noted by their con
spicuous absence from the following list. Second, there
are the functions which both BDS C and one of the other
two compilers define in the same way (from my over
view, this is generally the SuperSoft compiler), while the
other compiler either does not support the function (the
normal case) or the definition is different. Third, the
cases where both the CP/M-86 compilers do not support

the function, or the definition of the function is different.
These are the ones which will cause the most trouble and
I will flag the entry with two asterisks preceding the fun
ction name (i.e. ··peek(n)).

Finally, a short note about syntax. The initial section
heading where the function name is given will name the
function with its list of parameters as they are given in
the BDS C User's Guide (i.e. sleep(n)). U I refer to any
function by name in the descriptive material following
the section heading, no parameters will be given (i.e.
sleep()). Please don't assume from this that there are no
parameters for that function. Also, any parameters that
are mentioned in text will be surrounded by single quotes
(i.e. for sleep(n) the parameter 'n' would be quoted). In
deference to those who will be rummaging through this
listing in the small hours of the morning, I have taken the
liberty of rearranging the functions from their
categorical order as found in the User's Guide into
alphabetical order.

A Note on Buffered I/O Functions
In the following list, only those functions which do not

have the same number of parameters being passed are
shown. However, there is a general difference between
the way BDS C handles buffered I/O and the "standard';
form of those functions. As is mentioned below, the BDS
C version of fopenO does not pass a mode parameter
when opening a fIle. The "standard" version of this fun
ction has the form: "fopen<fJlename,mode,iobuf)" and
returns a valid fIle descriptor, which is used by all other
buffered I/O functions to reference the opened fIle. BDS C
buffered I/O functions do not use a fIle descriptor, but
rather, directly reference the I/O buffer 'iobuf' (fopenO
does return a file descriptor, but it is not used for other
than error checking, since 'iobuf' itself maintains a copy
of the file descriptor for use by other buffered 110 fun
ctions). It may be necessary, therefore, for you to place a
'mode' parameter in your buffered I/O calls, for them to
operate correctly, check your compiler documentation.

alloc(n)
Returns a pointer to a block of memory 'n' bytes long.

This is the dynamic memory (heap) allocation function
used by BDS C. However, this function is obsolete and
being dropped from the standard libraries of some com
pilers. You should use callocO or mallocO instead of
allocO, if they are available in your compiler.

"call(addr,a,h,b,d), calla(addr,a,h,b,d)
Both of these functions are used to call a machine

subroutine at location 'addr'. U used outside of the CP/M
80 environment, almost anything can happen, none of it
good. The best that can be done is to try to determine
what the routine was to do; and recode in standard C. The

22

use of these functions makes the program essentially un
transponable (at least, not easily) .

**cfsize(fd)
The function calculates the exact number of sectors in

the open me given by the descriptor 'fd', without affec
ting the asaociated R/W pointer.

**codend().externs(),topofmem() ,endext()
I have grouped these four functions together, since they

all deal with the calculation of different areas of memory
for dynamic use in a program. These functions could
cause real problems, but they're so handy that they will
almost invariably be used if the situation is appropriate.

Codend() and externs() are essentially equivalent fun
ctions. Codend returns the first byte following the
program code and externs() returns the first byte of the
external data area. These will normally be the same,
unless the external data area has been explicitly moved
(this could be done so the code could be ROMmed) .

TopofmemO returns a pointer to the last byte of user
available memory (generally the base of the BOOS in
CP/M-SOl, while endextO returns a pointer to the byte
following the external data area. You can see that the use
of these two functions will allow for the calculation of the
amount of space in the system which can be used as heap
space.

Some compilers may not have any of these functions
available, or some may be present but the action of the
function may be different (for example, the SuperSoft
compiler has a function named topofmemO, but it fun
ctions the same as endext() in BOS C). If your compiler
has a way of determining the top of the external data
area, and you are using a small memory model (for 16-bit
compilers), the size of the heap area can be found by sub
tracting the top of the external data area from OXFFFF
(the top of the data segment in a small memory model>.
My thanks to John Johnson of Professional Microware,
who pointed out this fix.

**creat(filename)
Creates the me of name 'mename', erasing any

existing file which already has that name. Your compiler
may require an additional parameter after 'mename',
the mode in which the file has been opened. Check your
compiler documentation for the parameter list.

**cswO
Returns the byte value of the console switch register.

**errno(),errmsg(errnum)
Ooes the same as the external variable ERRNO and the

function perror(s) combination found in other compilers.

**execv(filename,argvector)
This function allows the passing of a variable number

of arguments to the chained program 'filename', by
passing 'argvector' a pointer to an array of string poin
ters. This could require a real software kludge to port a
program.

**exitO
If there is one function that I would have thought would

The Computer Journal / Issue #22

have been standard between compilers, it is exit(). No
such luck, each of the three compilers handled the closing
of files and flushing of buffers in a different way. In BOS
C, exit<) will close all open files, but does not flush any
buffers. This means the a BOS C program will have a call
to fflush() to empty any buffers before a call is made to
exit(). This may not be necessary for you. Check your
compiler documentation to see just how exit() functions
in your compiler.

**fabort(fd)
The function frees the file descriptor 'fd' without

closing the file. This function was present in the Super
Soft compiler, but only to maintain some compatability
with BOS C. It's not a great idea to use this function even
if it's present in your library, since some or all of the file
input can be lost if the flle had been opened for writing.

**fcreat(filename,iobuf)
Creates the flle 'fllename' and opens the file for buf

fered output using a buffer pointed to by 'iobuf'. The size
of the buffer is determined from the BOSCIO.H variable
BUFSIZ. This function is needed, since the BOS C version
of fopen () does not support the mode parameter. A call to
fopen of the form "fopen(fllename,mode,iobuf)", where
mode is declared as "w" (write only) would accomplish
the same. See below for the BOS Cversion of fopen().

**fgets(str,iobuf)
Reads a line from the input buffer 'iobuf' and loads it

into the string pointed to by 'str'. A third parameter 'n'
(the number of bytes to be read) may be required by your
compiler. The BOS Cversion reads the buffer until an end
of line is found in the input stream, not until a specified
number of bytes have been read. The alternate version of
fgetsO has the form "fgets(str,n,iobuf)".

**fopen(fllename,iobuf)
Opens the file 'filename' for buffered input and

initializes 'iobuf', the input buffer. This function does not
implement the file I/O mode parameter and, therefore,
may be a parameter short for your version of fopenO.
The alternate version of fopenO has the form
"fopen(filename,mode,iobuf)".

getchar()
The BOS C version of getchar() tests for 1\ C and re

boots the operating system if found. My other compilers
don't, so if you wish to do this type of interrupt test, it
would have to be coded explicitly.

**getline(strbuf,maxlen)
Returns a text line of characters of maximum length

'maxlen' into the space pointed to by 'strbuf'. This seems
to be a special case of gets0 ,with the maximum line
length given as a parameter (there is an automatic
return with getlineO when 'maxlen' is reached>. GetsO
could be used in place of getline(), though you would have
to watch that the length of the string did not exceed the
size of the array into which it was being read, since gets ()
does not check this.

...

;'.

The Computer Journal! Issue #22

getval (strptr)
'Strptr' is a pointer to a pointer of a string of ASCII

characters separated by comma's. This is the driving
routine used by initw() and linitb() to fill their arrays.
This function probably won't be present in compilers
which allow initialization (see the descriptions of initb()
and initwO, below).

initb(array,string) , initw(array,string)
These functions are used to perform the initialization of

character and integer arrays respectively. They are not
needed in compilers which allow the initialization of
arrays at the time they are declared.

inp(n),outp(n)
The functions read and write 8-bit values to the port 'n'.

If these functions are not present in your compiler, it
would be possible to accomplish the same thing by the use
of pointers.

isspace(c)
Tests whether the character 'c' is space, tab (\ t) or

newline (\ n) character. This same functions may be
called iswhite() in other compilers.

khbit<)
Polls stdin to see if there is a character present, returns

TRUE orFALSE.

movrnem(source,dest,count)
Moves 'count' bytes of memory from location 'source'

to destination 'dest' . The original memory is not
modified, unless the destination area partially overlies
the source.

"oflow(fd)
Quoting the manual "returns true (non-zero) if an over

flow has occured into the high order (third) byte of the
random-record field of the FCB". Good luck.

··open(filename,mode)
Opens the file specified by 'filename' for I/O as given

by 'mode' .However, the meanings of the mode values are
different in BOS C. BOS modes are: 0 = input (write
only) , 1 = output (read only), 3 = input!output
(read/write) .

pause()
Tests for console input, looping until a key is pressed.

··~(n),poke(n,b)

These are equivalent to BASIC PEEK and POKE stat
ments, and are not really necessary, since C supports in
direction. Peek(n) can be simulated by initializing a char
pointer:

char ·bdosjmp = OX05; .
This won't work in BOS C or other compilers which don't
support initialization. If the compiler doesn't support
initialization use:

char ·bdosjmp;
bdosjmp = (char·) OX05;

(This will only work in the 8086 environment if the OS
register points to the correct segment. This can't be

23

guaranteed) .
As is pointed out in the BDS C manual, poke() is better

accomplished by using pointers:
·n=b;

putchar(c), putch(c)
The BDS C version of putchar() is able to detect the in

put of 1\ C (and 1\ S) during character output. Putch() does
not detect these control characters. A call to putchO,
therefore, is equivalent to putchar() in other compilers.
If you want to be able to interrupt character output, you
will have to code an explicit test into the output loop.

qsort<base,nel,width,compar)
This function is used by BOS C to conduct a shell sort.

The type of sort that is conducted may be different for
your compiler (Digital Research does a quick sort) even
though the function name is the same. Check your com-

. piler documentation.

··read(fd,buf,nbD
Reads the number of blocks given by 'nbI' (1 block =

128 bytes) from the file given by the file descriptor 'fd' in
to the buffer 'buf'. Other versions of readO require the
number of bytes to be read as the final parameter, rather
than the number of blocks. To pass a valid parameter,
multiply the value of 'nbI' by 128.

rename(old,new)
Renames the file given by filename 'old' to that given

by filename 'new'. Although there are obvious advan
tages to this function, it is not supported by Digital
Research, and possibly not by your compiler. Check your
compiler documentation. This could be accomplished by
a BOOS call to change the FCB.

··rsvstle(n)
The function limits the closest approach of the stack

(which grows down from the top of memory) and the
heap (which grows up from the end of the external data
area) to 'n' bytes. Stack/heap management of this type is
generally the responsibility of the programmer.

··setfcb(fcbaddr,filename) ,fcbaddr(fd)
SetfcbO initializes a CP/M FCB with the string pointed

to by 'filename', while fcbaddr() returns the address of
the FCB pointed to by 'fd'.

setmem(addr,count,byte)
The function sets 'count' contiguous bytes starting at

'addr' to the value of 'byte'. This function is used to
initialize buffers and arrays. It is not needed in compilers
which support initialization.

sleep(n)
Suspends the execution of a program for a variable

amount of time. Since how the time delay is calculated is
compiler and processor dependent you should consult
your compiler documentation.

··ungetch(c)
The character 'c' is placed on the console bulfer and is

returned by the next call of getchar(). This function may

..

24 The Computer Journal / Issue #22

only
$250.00

be called ugetchar() or ungetchar() by your compiler.
I

·~te(fd,buf,nb1)

The function writes 'nbl' blocks from the memory
location pointed to by 'buf' to the file pointed to by 'fd'.
Other versions of write pass the number of bytes to be
written, rather than the number of blocks. It would be
necessary to multiply the value of 'nbI' by 128, to obtain a
valid parameter. •

The C Users' Group
The above article was reprinted from The C Users'

Group (CUG>September, 1985 newsletter, with their
permission. A language is only as good as what you can
do with it, and CUG maintains a large library of very
useful programs. We will be reviewing and commenting
on some of their disks in the future, but you should con
tact Donna Stucky Ward at The C Users' Group, Box 97,
McPherson, KS 67460 for details on joining the group and
a catalog of their disks.

Starting with the next issue Donald Howes will be
writing a column on C language programming, and we
would appreciate your comments and suggestions on the
topics to be covered. We would also like to include your
tips, routines, and questions.

APROTEK 1000™ EPROM PROGRAMMER-_£
• iiarlll..
Ii'A SIMPLE. INEXPENSIVE SOLUTION ro PROGRAMMING EPROMS

The APROTEK 7000 can program 5 volt, 25XX se"es through 2564, 27XX
se"es through 27256 and 68XX devices plus any CMOS verSIOns of the above
types. Included With each programmer IS a personalitv module of your chOice iothers
are only $10.00 ea. when purchased WIth APROTEK 7000'1. Later. you may reo
QUire future modu6es at only $ 15.00 ea., postage paId. Available personality
modules: PM2716. PM2732. PM2732A. PM2764, PM2764A. PM27128.
PM27256, PM2532, PM2564, PM68764 Itncludes 687661 tPIease specIfy
modules by these numbers).

APROTEK 1000 comes complete with a menu driven BASIC driver programmer
IIstlng whIch allows READ. WRITE. COPY. and VERIFY WIth Checksum. Easily
adapted lor use with 18M. Apple. Kaypro. and other mIcrocomputers WIth a RS·232
DOn, Also Included is a menu driven CPM assembly language dnver listing With Z·BO
IDARTI and 8080 182511 110 pon examples. In.erface IS a SImple 3·wore RS·232C
With a female 08-25 connector. A handshake character IS sent bv the programmer
after programming each byte. The Interface IS sWitch selectable at the follOWing
6 baud rates 300, 12k. 2.4k. 4.8k. 9.6k and 19,2k baud. Data format lor program-

~P~bM ~~~~~~~Ub,cog~~er(ls~an~~r;ll~t~~T~:~n~)(~~:~a~h::e'te~sSII~en~O~~;~I~d:~
absolute (obleell code.

The APROTEK 1000 1$ trlJly universal. It comes standard at ' 17 VAC 50 ... 60 HZ
and may be Internallv lumpered for 220·240 VAC 50/60 AZ, FCC Verification
(CLASS Bl has been obtained tor the APROTEK 1000.

APROTEK 7000 i. co_ by _ 1 y_,,,._ _nd 1__ ..._"_nt)'.
FINALLY - A Simpl_. I__,.....;w_ Solution To E'_';rIfI EPROMS

APROTEK·200"· EPROM ERASER APROTEK·300"· only $60.00,
Simply Insert one or twO EPROMS n"lIs eraser 1$ Identical to APROTEK
and SWitch ON. In about 10 mInutes, zootllrl but has a bUilt-In timer so that the
you SWitch OFF and are ready to ultraIJlolet lamp automatically turns off In
reprogram. 10 minutes. elIminating any rtsk of overex·
APROTEK.2oo'" only 545.00, posure damage '0 your EPROMS

APROTEK·300'" only $60.00.

't

APROPOS TECHNOLOGY
1071-A Av_ Acuo, c.m....... CA 93010
CAll OUR Tall FREE ORDER UNES TODAV:

1-18001982·5800 USA Of 1·(8001 982·3800 CAUFORNIA
TECHNICAL INFORMATION: 1-18051482·3804

Add Shipping Per Item: $3.00 Cont. U.S. $6.00 CAN, MeXICO. HI. AK. UPS Blue

i ~

..

• Extends the lie to 128K RAM
• Adds 80 column videa display
• Enhances spreadsheet and word·

processor viewing
• Allows double high resolution

graphics
Easily installs in slot 3 of the Apple
lie'". Comes with full documentation.-'- $19

Reliably extends 01150 signals at inter·
nal slots to a 50 pin DIP. One side plugs
into on Apple" slot, the other plugs
into any breadboard/protoboaro.
Now you can easily wire on interface
cord circuit without tedious wirewrap·
ping or soldering techniques. A must
for every designer. Only 134.

An advanced digital I/O interface
cord for the Apple'", Provides four 8·
bit ports and two odditionollines for
handshake per port. Has interrupt
arbitration circuit, interrupt routing
switches, and more. Excellent choice
for monitoring and control opplico·
tions. New low price $65.

RAM SOeT. _

_________MICROPORT 32"

EXTEND·50T
• _

The real-time dock card for the Apple~ features:

• PRODOS/APPLEWORKS~ and DOS 3.3 compatible
•24 hour and 12 hour AMlPM formats
•Time increments of 1millisecond to 99 years
•Automatically time and dote stomps your files
• Powerful on-board firmware in 4K EPROM
• High capacity lITHIUM8 coincell battery
• Displa~ the date and time on Appleworks~ screen
•Eight BSR serial ports for future expansion
• Full documentation included in a $99

users manual
• Includes more software on disk

The Computer Journal/Issue #22

The SCSI Interface
Introductory Column To A Series

By Rick Lehrbaum

25

To research the history of SCSI, I
had lunch with Larry Boucher, the
founder of SCSI. It all began in the
Spring of 1!n'9 when Larry was the
Director of Design Services at
Shugart Associates, and Shugart
was getting ready to announce
another new Winchester disk drive
product. As usual, it would take 1lf.!
to 2 years before Shugart could enjoy
widespread sales of the new drive
since it took that long for all the con
troller designers to debug their
phase-locked loops. But that was the
way it had to be back then-there
was no standardized 110 bus in the
micro world. (Unless you want to
count RS-232!)

Larry decided that what Shugart
needed was a way to speed up con
troller design. Before coming to
Shugart, Larry had worked at ffiM,
and it occurred to him that
something like the IBM OEM Chan
nel also made sense for micro's. So
Larry, along with Bernie Nieman
(who worked for Larry) and Jim
Korpi (who worked for Bernie),
wrote the spec for a new interface to
be proposed for all future Shugart
disk controllers. They called it the
Shugart Associates Standard Inter
face, or "SASI." According to Larry,
there were two major objectives in
defining SASI: (1) Make it the
cheapest possible interface with an
8080-like bus; and (2) Outperform
the IBM OEM Channel bus, which
ran around 500,000 bytes per second
average throughput. Both goals
were met.

The rest is history. Shugart of
ficially adopted the new SASI inter
face in July 1!n'9, and commissioned
Data Technology Corporation COTC)
to do the first SASI disk controller in
August 1979. DTC performed ad
mirably, under the direction of Dave
Tsang, delivering samples of the
new SASI controller board to
Shugart in December, followed by
delivery of 25 production boards in
January 1980. A new industry stan
dard was born. But few knew it. ..

In July 1981, NCR began taking an
interest in SASI. In December 1981,
John Lohmeyer (NCR) and Hank
Meyer (Shugart) formally proposed
to the American National Standards
Institute (ANSI) that it adopt SASI
as a small computer intelligent
peripheral interface. An ANSI
committee called "ANSC X3T9.3"
was in the process of defining "The
next microcomputer 110 interface."
They turned SASI down! It seemed
all was lost.

But there was another ANSI com
mittee, currently inactive, which
had been chartered to define a
microcomputer "peer-to-peer"
protocol. "ANSC X3T9.2," as this
other committee was called, took
SASI under its wing, in February
1982. One of the first official orders of
business was to change SASI's
name, since it contained Shugart's
name. They settled on "Small Com
puter System Interface."

In the months that followed, ANSC
X3T9.2, under the able direction of
Bill Burr (National Bureau of Stan
dards), hammered out a thorough
and percise specification (currently
over 180 pages long!) which makes
SCSI one of the bext documented in
terface standards in the computer
industry.

Last summer, the members of
ANSC X3T9.2 unanimously approved
the standard, forwarding it to the
ANSI parent organization for public
review and final approval. Short of
editorial and other minor correc
tions, the final SCSI specification is
in hand.

And now, a few questions from
readers...

What is SCIS?
SCSI stands for "Small Computer

System Interface" and is quickly
becoming the most popular interface
for connecting hard disk drives to
small computers of every type. But
as you'll see later, SCSI can be used
for a lot more than that.

Why should I use SCSI?
You should use SCSI if you need an

easy way to make your computer or
computerized device expandable.
Today, SCSI is mostly used for ad
ding hard disk and tape controllers
and drives. But soon, there will be
lots of other functions to choose
from, including: optical storage,
network interfaces, graphics
displays, co-processors, and more.

SCSI has a number of important
advantages over other ways of at
taching add-on's to a small computer
system. One of the biggest advan
tages of SCSI is that is is an easy and
inexpensive interface to add to any
computer. It also simplifies your sof
tware hassles: when implemented
correctly, SCSI allows you to change
from one brand of device (such as a
hard disk controller and drive) to
another, with little or no software
modifications.

How do you pronounce "SCSI"?
I'm glad you asked that question!

There has really been a lot of time
and energy arguing about how to
pronounce SCSI. Well, it pretty
much boils down to either pronoun
cing the word SCSI as SKU-zzy, or
spelling it out S-C-S-I. My own per
sonal preference is "SCSI." On the
other hand, surveys show that 78% of
corporate marketing executives
prefer spelling it out.

Where can I get more information?
You have two choices: (1) Read

this colunm in The Computer Jour
nal, or (2) Be the fIrst one on your
block to have an offIcial copy of the
"ANSC X3T9.2 SCSI Specification,"
by sending $20, along with a self
addressed mailing label to: X3
Secretariat, Computer and Business
Equipment Manufacturers Assn.,
311 First Street NW, Suite 500,
Washington, DC 20001.

Watch for "An Introduction to SC
SI" in the next issue of The Com
puter Journal, and send your

26

III
NGS FORTH

A FAST F'ORI'H,
OPTIMIZED FOR 'l'HE IBM
PERSONAL COMPUTER AND
MS-DOS COMPATIBLES.

8TUIDARD FEATURES
INCLUDE:

.79 STANDARD

.DIRECT I/O ACCESS

.FULL ACCESS TO MS-DOS
FILES AND FUNCTIONS

.ENVIRONMENT SAVE
, LOAD

eMULTI-SEGMENTED FOR
LARGE APPLICATIONS

.EXTENDED ADDRESSING

eMEMORY ALLOCATION
CONFIGtmABLE ON-LINE

eAUTO LOAD SCREEN BOOT

.LINE & SCREEN EDITORS

.DECOMPILER AND
DEBUGGING AIDS

.aoaa ASSEMBLER

eGRAPHICS , SOUND

eNGS ENHANCEMENTS

.DETAILED MANUAL

.INEXPENSIVE UPGRADES

eNGS USER NEWSLETl'ER

A COMPLETE FORTH
DEVEUJPHENT SYSl'EM.

PRICES STAR!' AT $70

HEW+BP-150 , BP-110
VERSIONS AVULABLE

•KErr GENERATION SYSTEMS
P.O.BOX 2987
SANTA CLARA, Q. 95055
(408) 241-5909

questions, ideas, or comments to the
Editor at TCJ or to Rick at the
following address. •

Rick Lehrbaum
VP of Engineering

AMPRO Computers, Inc.
PO Box 390427

Mountain View, CA 94039

SCSI NEWS

This section will bring you the
latest news and information about
SCSI related products and ap
plications. Your input and experien
ces will be greatly appreciated.

SCSI RAM-DISK-The AMPRO SC
SI/RAM suitable for use in both
single- and multi-master system ap
plications is available with either
512K bytes or 1 megabyte of RAM,
and can be used in any system
having an SCSI (SASn interface. By
adding one or more SCSI/RAM units
to a host computer, system memory
need not be used as a RAM disk,
thereby freeing the computer's
system RAM for program functions.
Data can be transfered over the SCSI
bus at up to 1.5 megabytes per
second, and effective SCSI/RAM
disk transfer rates are generally as
fast as when using system RAM. In
addition, the SCSI/RAM does not
clear its memory on SCSI bus reset,
thereby allowing the SCSI/RAM to
be used for system memory backup
on power-fail detection.

Inexpensive SCSI host adapters
allow connection to a wide variety of
host computers, including the IBM
PC and AT, VME-bus, Multibus, and
5-100. The SCSI/RAM, with 512K
bytes of on-board RAM occupies a
single 5114 x 73/4 inch circuit card,
and has the same mounting holes
and footprint as industry standard
5114 inch disk drives. A daughter
board may be added to expand the
RAM disk size to 1 megabyte.
Available for $395 from AMPRO
Computers, 67 E. Evelyn Ave, Moun
tain View, CA 94039, (415) 962-0230

SCSI Printer Server-The AMPRO
SCSI/PRN intelligent printer server
is suitable for both single- and mulit
master systems. Up to seven SCSI
hosts can connect to a single SC
SI/PRN, sharing printer and spool

The Computer Journal/Issue #22

buffer resources, and maximum
data transfer rate is 1.5 megabytes
per second. The SCSI/PRN's three
printer interfaces allow
simultaneous connection of one Cen
tronics compatible printer and two
RS232C 'serial printers, with host
controlled baud rates of up to 19.2K
baud. Onboard memory of 512K
bytes, expandable to 1MB via
daughter board, is used as a spool
buffer. Available from AMPRO for
$449.

SCSI Real-Time I/O-The AMPRO
SCSI/lOP is an intelligent processor
which adds read-time control and
measurement capabilities to any
computer system having an SCSI in
terface. The SCSI/lOP plugs into a
normal STD bus card cage, and can
control STD bus I/O boards such as
analog-to-digital converters, video
display controllers, speech syn
thesizers, network interfaces, etc.
Low cost SCSI host adapters are
available for many computer
systems, and SCSI's bus arbitration
feature permits up to eight host
computers and SCSI/lOP's to share
resources.

The SCSI/lOP includes a 4 or 6
mHz Z80 microprocessor, eight byte
wide memory sockets for up to 64K
of EPROM/RAM memory, and a Z80
counter/timer controller. Fimrware
on the SCSI/lOP supports a number
of basic operations, and both the
Initiator and Target functions of SC
SI which include peer-to-peer
message capability. The SCSI/lOP
can be used in hierarchical real-time
control system configurations, or
where either host or I/O device
redundancy is required. Available
from AMPRO with preliminary
pricing of $119.

SCSI Hard Disk Subsystem-The
AMPRO hard disk subsystem con
sisting of an SASI S1610-4 controller,
10 Mbyte half height hard drive, box
with fan & supply, and cables is
available 100% complete and tested
for $599 from Peripheral Land, 3400
EI Camino, Suite 10, Santa Clara, CA
95051 (408) 248-5282. •

The Computer Journal / Issue *22

Indexed Sequential Access Method Files
Using Turbo PascaiiSAM Files
By Jerry Houston

27

ISAM, or Indexed Sequential Access Method, files are
the type most commonly used for business purposes on
large computers. ISAM file records are accessed accor
ding to a KEY FIELD for reading, writing, or updating.
This method provides random access to the file records,
allowing simple updates and quick retrieval of a par
ticular record.

Operating systems that support ISAM mes directly are
usually found on minicomputers and mainframes. There
is certainly a cost to pay in terms of overhead (both in
processing requirements and in media space), but the
advantages are generally thought to be worth the cost.

In t.'1e simple example that accompanies this article,
an ISAM-type file is set up as a phone directory. The key
field in each record is the name of a person or a company,
and the rest of the record contains just a phone number.
Now, if the prospect of another phone list program
doesn't exactly make your floppies quiver, consider that
you can easily derme more fields for the me, and the key
field can be anything you want it to be-a name, em
ployee number, stock number, or nearly any other infor
mation upon which you'd like the me to be organized.

Taking that modification a step further, the index for
the me could be checked to see whether it INCLUDES a
particular key word-easy to do in Turbo Pascal-and a
large me of The Computer Journal articles could be sear
ched for a particular content.

In the large computer systems that support ISAM files
directly, the key fields are checked against two or more
kinds of index on the disk drive itself. The desired KEY
FIELD is compared to the entries in a short sequential
me called a CYLINDER INDEX, which lists the upper
limits for the key fields that are located on a particular
CYLINDER (the same track extended through all the
recording surfaces of the disk-pack). Once the head ac
cess mechanisms have positioned the read-write heads to
access a particular cylinder, then a track index is con
sulted to determine the track on which the desired record
can be found, and the proper read-write head is elec
tronically switched into action. Then it's just a matter of
waiting until the right record rotates under the head, a
delay called latency, or rotational delay.

A big advantage of ISAM files over ordinary sequential
files becomes apparent when it's necessary to update
one. A sequential file must be re-created in its entirety
just to change a single record. Records in an ISAM file
can be re-written, making it easy to correct fields in in
dividual records. It's almost too obvious to point out, but
applications that require access to a limited number of
records from a large me are better served with random
access mes (such as ISAM) , so that all the previous
records don't have to be examined in order to find the one
that's needed.

Random Access On Micros
Most small computers have random access capability,

but somehow the program needs to determine which
record is to be read (or written). Random files can be
DIRECt ACCESS FILES, in which case the program
identifies the exact physical location (track and sector)
where the record is located, or they can be RELATIVE
FILES, where each record number is relative to the
beginning of the me. The computer already must know
how long each record is, and it can fmd the 29th record in
a relative me by passing over the first 28, then accessing
the next.

The trouble with this is, how is the computer to know
that the address and phone number for XYZ, Inc. is in
record number 127, or that the record for product number
C-12285-BR is located on track 2A, sector 09? The answer,
of course, is that it needs an INDEX, as in ISAM.

Using the relative files that are available with every
disk-equipped computer, and accessible from every
language, it's possible to duplicate the ISAM function
with applications programming. This requires keeping a
small sequential me on the disk that contains the key
fields and corresponding record numbers of the main
(relative) me. At the beginning of the program, and
whenever the me is updated, the index file is read into a
table in memory which can be searched to fmd the
location of whatever record is needed. IT a file is designed
for direct-access, then the index must contain the key
field and the physical track location where the record can
be found. Since relative mes are easier to work with and
more versatile in some respects, this article will concern
itself with simulating ISAM with Turbo Pascal relative
files.

Program ISAM.PAS
The Turbo Pascal program that accompanies this ar

ticle maintains an ISAM me of names and phone num
bers in such a way that the user can type in a name (the
KEY FIELD) and the computer will deliver up the phone
number associated with it in the me.

This example program was purposely kept simple, but
it would be an easy matter to expand the records in the
ISAM me to hold whatever information is required for a
more complex application. Once we've covered the
example program in detail, I'll mention a way to make it
even better, ifyou're so inclined.

Portability of Code
In keeping with my philosophy that a programming

process (design, coding, testing) shouldn't be done twice
if once will do, I've written the procedures and functions
of the accompanying program with local variables and
parameter lists (also called argument lists). Thus, these
sections can be stored separately in a Pascal library and

28

used whenever a programming project requires ISAM
files. They can be read into the source code being
developed, and made a part of the new program with
relatively little effort. If GLOBAL variables (rather than
passed parameters) are used, each procedure and fun
ction will need to be modified extensively to agree with
the variables used in every new program.

Run-Time Narrative
When ISAM.PAS is compiled and run, it will look for an

index file that shares the name of the ISAM file being
used. The ISAM file will have an extension of .ISA, and
the matching index file will end with .KEY. The first time
the program is run, of course, neither of these files will
exist, and the file-read sections are coded to understand
this.

The menu that appears at the beginning of the program
will offer the choices:

Q=Quit R=Read A=Add
D=Delete. C=Change

ADD will write new records to the ISAM file. The user
is prompted for a name to be used as the key field, then
the phone number to be stored with it. The name and
PHONE number go into the PHONE.ISM file, the name
and the RECORD number (from the ISAM file) go into
the PHONE.KEY file, and also into the table of keys
that's maintained in memory. Trying to add a new record
that has the same key field as an existing record is a big
no-no for ISAM file processing, so an appropriate error
message is displayed if this is attempted, and the ad
dition is not made.

DELETE will not remove a record physically from the
ISAM file, nor its key from the index, but it will replace
the phone number with a message that says it's been
deleted. This function of the program could be changed so
that the record actually IS deleted (at least, used for the
next ADD>, but at a cost of additional complexity that
isn't warranted in such an example. Trying to delete a
record that doesn't exist is taboo, and earns the user a
scolding from the computer.

CHANGE allows the phone number to be edited. In a
more complex application you would want to allow
editing of all the fields EXCEPT the KEY FIELD. If that
needed to be changed, a DELETE would be appropriate
instead. Naturally, an attempt to change a record that
doesn't exist is useless, and will be trapped as an error
condition.

QUIT is just a graceful way out of the program, back to
the operating system. From the menu part of the
program there are no files to close or other End Of Job
processing to do, so it just means a quick trip to the end of
the main logic. All the other functions re-run the main
logic, so that a variety of tasks can be carried out while
the program is running.

The Main Flow of Logic
I wrote this program knowing that I would be ex

plaining it in detail in this text, so it isn't as full of com
ments as it ordinarily would be. Remember that you'll
probably want to use this code again and again, so it
wouldn't hurt to add additional comments as you enter

The Computer Journal/Issue #22

the source. A few extra minutes of typing now can save
hours of debugging later, when you want to use this
method to access complex files in a new application-and
that goes for all source code. (End of Lecture, I promise.)

Let's take a look at the mainline logic first, that last
chunk of code that begins with BEGIN and ends with
END. Because this program is written modularly, the
main logic is short and simple. <It's not easy to write
spaghetti-code in Pascal but believe it or not, I've seen it
done!)

LoadKeys is a procedure that reads the .KEY file from
the disk and loads the values found there into the two
arrays IndexAray[1..200] and KeyAray[1..200] that make
up the file index table in memory. The array limits of 200
were chosen entirely arbitrarily, and might be much
higher in an application program, depending on need and
the availability of variable storage space. You can see
one purpose for the ReturnCode that many of these
procedures send back to their calling module-if the ap
propriate .KEY file can't be found on the disk, the
LoadKeys procedure sends back a return code of -, and
the main logic understands to print an error message to
that effect and bail out to STOP: .

START: is a label that tells the program where to go
when a restart is required. This is done after all the menu
functions except QUIT, which sends control instead to
STOP: at the bottom.

The line that writes the heading and menu items to the
screen starts out with a #26 as the first item printed.
That's a screen-clear character for many computers, and
could have been written just as well with a control Z.
Turbo Pascal also offers a screen clear procedure, but
this is shorter to type. Other Write() statements in this
program use control M and control J to produce a
carriage-return and a line-feed, respectively. Alter
nately, those could be coded as #13 and #10.

After Choice is read, it's changed to upper case with the
UPCASE() function that's built-in. This makes it easier
to write the subsequent CASE STRUCTURE so that up
per and lower case selections will both be honored. The
arguments of the case structure, of course, match the of
ferings from the menu line at the top of the screen, and all
except 'Q' will execute a particular procedure written as
a demo.

That's all there is to the main logic. Thanks to struc
tured modular programming, a problem that's too com
plex to grasp all at one time can be broken down into
separate tasks that are easily comprehensible. Now those
smaller tasks will be broken down further into individual
steps with an explanation for each.

Of Types, Variables, Functions, and Procedures

Those who are new to Turbo Pascal (and I hope that
many of you are reading this) may be a little unclear
about the use of the TYPE declaration. It's pretty easy to
understand why Turbo (or even BASIC) wants to know
whether a variable is to be treated as a real number or an
integer, as the two are stored differently in memory and
in files. They require different numbers of bytes and are
treated differently by the compiler. Fact is, a Pascal
programmer isn't limited to the pre-declared types of
variables that most languages provide, but is free to

',I

I~

Z SETSYOU FREE!
Free to create computer environments right for you ... free to automate repetitive tasks ... free to
increase your productivity. Z-System, the high-performance a-bit operating system that flies!
Optimized assembly language code - full software development system with linkable libraries of often
needed subroutines -relocating (ROM and RAM) macro assembler, linker, librarian, cross-reference
table generator, debuggers, translators, disassembler - ready to free you!

New generation communicatIOns package provides levels of'flexibility, func-
TERM III tionality, performance not available until now. Replaces BYE and XMODEM ...

master/server local area network capability ... public or private bulletin board
and electronic message handling are integral features ... auto-dial/answer, menu install ...
XMODEM (CRC/Checksum), MODEM? Batch. Kermit. CIS. and XON/XOFF protocols ..
1DO-page manual : $99.00

Rolls Royce of message handling systems mates with TERM III or BYE for
Z-MSG most advanced overall electronic mail/file transfer capabilities ... menu

installed ... extreme configurability ... many levels of access and security ...
word. phrase editor. field search complete message manipulation and database
maintenance $99.95

Elegant, menu and command-line driven file and disk catalog manager.
DISCAT Generates and controls multiple master catalogs. working catalog used for

update quickness. Nine fleXible modules easily altered by user for custom
requirements. Works with Z shells (VMENU. VFILER, MENU), aliases, and multiple commands
per line $39.99

ZCPR3: The Manual Bound. 350 pages, typeset book describes features of ZCPR3
command processor. how it works. how to install, and detailed command usage. Bible to
understand Z-System $19.95

ZCPR3 and I/OPS Loose-leaf book, 50 pages, 8-1/2" by 11", describes ins-and-outs of
input/output processing using Z-System. Shows how to modify your BIOS to include I/O
redirection complements The Manual $9.95

More missing links found - Z Application Progams! Fly with eagles! Our programs promote high
performance through flexibility! Productivity results from dynamically changeable work environments,
matching operator to tasks and machines.

Above programs require 48K-byte memory, ZCPR3. Z-Com, or Z-System, and Z80/NSC800IHo64180
based computer. Shipping from stock. State desired disk format, plus two acceptable alternatives. As
payment, we accept Visa, Mastercard. personal checks, money orders, and purchase orders from
established companies. We also ship UPS COO.

Call or write to place order or to obtain literature.

29

15!1e!J Echelon, Inc. 101 First Street • Suite427 • LosAltos, CA 94022 • 415/948-3820

30

define types that are consistent with the present needs.
In this program, the procedures that access the files

will need to be passed a parameter that tells them what
file name to look for. Since the parameter can be called
by one variable name on the sending end, and by
something entirely different on the receiving end, the
procedure must be able to identify it according to (1) its
location in the parameter list and (2) its type. Because
I've defined a TYPE called AnyFile, a string that's able
to contain ten characters, I can pass a file name along
from a "calling" procedure to a "called" procedure in a
list of arguments. The argument list specifies to the
called procedure that the file name is first in the list, and
also what type of variable it is. This helps to make the
code "portable", in that it can be used in various
programs with little or no customizing needed.

Similarly, I'll be using a lot of string variables that con
tain a 3<kharacter name and a lot of string variables that
contain a 2O-character phone number. These are defined
as type NAME and type PHONE.

Even entire records can be defined as a TYPE, as
shown by the next two entries. The records in the ISAM
file will all contain a NAME and a PHONE (which were
previously defined as types of their own, so these don't
need to be spelled out as to how many characters, etc.)
and the INDEX file will contain records that each contain
a NAME and a record number, which is of the ordinary
type INTEGER.

To digress for just a minute, if the number of records
were to be limited to less than 256 for an application like
this, it would be appropriate to use type BYTE instead of
INTEGER for all the variables that have to do with
record numbers and counters. Each variable would then
require only one byte of storage or memory instead of
two.

Now comes the familiar declaration for all the
GLOBAL variables in the program, the ones that are to
maintain their values from one procedure to the next. As
you can see, there are some variables that are declared
as ordinary types, such as INTEGER, and others that are
declared.as the special types that were defined above.

FINDEX()
. FINDEX is my shorthand for Find Index, a function
that searches through the table of key fields, and for each
key requested finds the appropriate record number in the
ISAM data file. It's a function, rather than a procedure,
because of the way it's written and used. When the ap
propriate parameters are passed to this function,
referring to FINDEX() is all that's needed to get an an
swer. One way of thinking of it is that you RUN a
procedure, but you MAKE USE OF a function. To find the
record number for a variable called Nameln, for exam
ple, from among MaxKeys number of entries, all we need
to say is:

RecordNumber: = FINDEX(Nameln,MaxKeys);

and we can use a function anywhere a variable would be
at home, such as:

Write(FINDEX(NameIn,MaxKeys»;

The Computer Journal/Issue #22

FINDEX begins by initializing COUNT to O. Since
COUNT is declared as a variable within the function
FINDEX, it is LOCAL to this function. Even though there
are other variables called COUNT elsewhere in the
program, they won't get confused. This is one of the
reasons why functions and procedures that use local
variables are so portable from one program to another.
FINDEXCode and FOUND, a Boolean truth flag, are also
declared here, and exist only within FINDEX.

From there on, it's a relatively simple function, and
even TurBeginners (sorry, I just couldn't resist, and this
IS supposed to be a tutorial...) won't have any problems
with the logic. The only line that's not entirely clear is the
one that actually compares the given name with the
names in the table. It starts out with:

If Copy(KeyAray(CountJ,l,Length(IndexKey»
=IndexKey then ...

Rather than requiring the given name to be an exact
match for the key field, I've written the program to allow
a partial-BUT CORRECT-name to be used instead.
The comparison is made to the key fields in the table only
up to the length of the given name. That way, I can find
the phone number for "Remote Measurement Systems,
Inc." by typing just "Rem", if I'm sure that none of the
other records starts with the same three letters. If there
aren't any others that start with "R", I could just type
that, but that would be taking a fair-sized chance. I need
to enter enough of the name that there is no question
which record is required, as the program will read the
record that corresponds to the tirst match it makes.

LOADKEYS
LoadKeys is a procedure, so it's something to RUN, not

USE. The program doesn't expect LoadKeys to take on a
value like a function, although this procedure does, in
fact, pass a ReturnCode back to the calling module. The
return code goes back under its own variable name, not
the name LoadKeys. The object of this procedure is to
read the .KEY file from the disk and load the values it
finds there into the two arrays that make up the index
table in memory.

Following the procedure name is a good example of a
parameter list. I'll discuss just this one in detail, and
you'll be able to see the similarity between this one and
the parameter lists in the other procedures.

First of all, if the procedure is to load a file into
memory, it needs to know from which file to read. The
file name COULD have been declared as a global
variable, but then it would have to be done that way in
every program that makes use of this procedure, and the
procedure would be workable only with one file name per
program. Instead, the file takes on the name that this
procedure associates with the parameter FileName,
which is defined as type AnyFile. The calling logic can
place a literal value, such as a file name of 'PHONE' in
the first spot in the parameter list, and the called
procedure will find it there.

The other way of passing these parameters is shown
next, with two parameters passed as variables. There are
a lot of procedures in this program that make use of the
variables MaxKeys and ReturnCode, which have already

Iii;

1$

il

The Computer Journal/Issue #22

been explained, and it's easiest to pass those back and
forth as variables in the parameter list. I happen to use
MaxKeys and ReturnCode for the very same purposes
each time I use these procedures in other programs, so
that's not difficult. You'll notice that the keyword VAR
precedes these variables in the parameter list, just as it
would in an ordinary variable declaration. Of course, if I
intend to have a program work with multiple ISAM files,
I have to be sure that MaxKeys is assigned properly
before this procedure is called. ReturnCode gets its value
within the procedure and passes it back to the calling
module, so it doesn't have to be initialized before use.

Since this procedure accesses a disk file, it makes use
of the Turbo compiler directives {$I-} and {$I+} which
turn off system disk error handling and turn it back on
again, respectively. If there's a problem like "file not
found", I want to deal with it from within this program,
not have the operating system crash the program on that
account. After the error-checking is turned off, an attem
pt to open a buffer for the file using the statement
Reset(IndexFile) is all that's needed to see whether the
file exists. The Turbo Pascal function IOResult will
return a value of zero if everything was all right, or an
I/O error number if it wasn't. If things went well, this
procedure turns error checking back over to the system
and continues. If they didn't, a value of -1 is placed into
ReturnCode, the parameter that will be passed back to
the module that called LoadKeys, and control is passed to
the label RETURN: at the bottom of this procedure. That
calling module is written so as to understand that a
ReturnCode of -1 means the .KEY file wasn't there.

31

About the only other obscure code in this procedure is
the part that starts out with the line:

With IndexRec Do .,.

IndexRec is defined as a variable of type INDEX, which
means that each IndexRec actually contains the
variables ISAMName and ISAMPhone, which are of type
NAME and PHONE, respectively. In order to access
these "buried" variables, we need to enclose all referen
ces to them between statements like the above, and an
"End;". Otherwise, the compiler will swear that it
doesn't know what variables we're talking about. Trust
me, this is only confusing at first-it becomes pretty in
tuitive after you've used records this way a few times.
The convenience of being able to refer to entire records
by one variable name (such as when reading or writing to
a file) is wonderful. By the way, the WITH statements
can be nested, and if you write some lines that need to ac
cess variables that are shared by more than one record at
a time (like a variable that's stored in two different files),
you can write it such as:

With IndexRec, DataRec Do

End;

It's pretty clear, then, that this procedure reads the file of
the same name as the ISAM file, but with an extension of

MTBASIC
Multitasking BASIC Complier

Windowing ~ultitaskin~ RO\fable code Recursivp. Pri..e III1Hi SUPIl"M \fulti-line fun..tions

MTIlASIC y y y y $49.95 optional y

~BASIC n n n n $:1511.lIn n n

TURBO PASC\L IBM only n n Y $fi9.B5 oplinnal Y

CBASIC2 n n n n $fillll.1I11 n n

BASCO\I n n .n n $]!15.00 n n

MfBASIC, the multitasking Basic compiler, has everything you need!

P.o. Box 2412 Columbia, MD 21045 -1412

Interactive Compiler
MTBASIC is an interactive compiler

and a unique Basic language. MTBASIC
is easy to use since you can write pro
grams in an interactive environment and
them compile them using only one com
mand. MTBASIC is easy to learn because
it is similar to manv other Basics. The
biggest advantage ci'f using a compiled
Basic is FAST PROGRA~tS. With
MTBASIC you get speed and advanced
features.

Features
Multitasking
Windowing
Interactive

Compiles in seconds
Multi-line functions

No runtime fee
Handles interrupts

Fast native code
ROMabie code
Formatted I/O

Assembly language calIs
In-line machine code

Complete Package
The MTBASIC package includes all

the necessary software to run in inter
preter or compiler mode. an installation
program (so any system can use win
dows). demonstration programs. and a
comprehensive manual.

Ordering
MTBASIC is available for CP/M. \-IS-00S. and

PC-DOS systems for $49.95. MTBASIC with
8087 support is available for MS-OOS for $79.95.
Shipping is $3.50 ($10.00 overseas). MD
residents add 5 % sales tax. Me. Visa. checks
and COD accepted.

3011792-8096

32 The Computer Journal / Issue #22

Progralll I5At1;

{ De.onstration of reading and Mriting an ISAH-type file with Turbo Pascal >

Label Start, Stop; {labels used in lIlain logic only}

Type AnyFile
Na_
Phone
ISAI'1

INDEX

= StringClSl;
StringC3SJ;
String[2SJ;
Record

ISAI'lNa_
ISAI'1Phone

End;
Record

KeyField
RecNuIll

End;

{declaration of non-standard type.>

Na_;
Integer;

VAR INDEXFile
ISAI'1File
I NDEXRec:
ISAI'1Rec:
IndexAray
KeyAray
Choice
NameIn
PhoneIn
l'1axKeys
ReturnCode:

File of INDEX;
Fi Ie of ISAH;
INDEX;
ISM;
Array[1 •• 2SSl
Array[I •• 2SSl
Char;
Name;
Phone;
Integer;
Integer;

{GLOBAL variables that retain their}
(values throughout the progra_>

of Integer;
of Na_;

{LOCAL variables that exi.t only>
(within the function FINDEX() >

Function FINDEX(INDEXKey:Nallle;l'1ax:lnteger)
Label Return;
VAR Count: Integer ;

FINDEXCode : Integer;
Found : Boolean;

: Integer;

= IndexKey then

{ • opens up' INDEXRec to get access>
{to the variables inside it }

:= FINDEXCode Else FINDEX := -2;

S;
S;
False;
Do

True) then FINDEX

Begin
Count .
FINDEXCode :=
Found :=
With INDEXRec

Begin
Repeat

Count := Count + 1;
If Copy(KeyArayCCountl,I,Length(lndexKey))

Begin
FINDEXCode := IndexArayCCountl;
Found := True;

End;
«Found = True) or (Count >= l'1ax));Until

End;
Return:

If (Found
End;

{error-checking back on here}
{checks whether any error happened>IOResult <> e then

Begin
ReturnCode := -1;
6oto Return;

End;

Procedure LoadKeys(FileNa..:AnyFile;Var l'1axKeys:lnteger;ReturnCode:lnteger);
Label Return;
Var Count: Integer;
Begin

Assign(lndexFile,FileName + ·.KEY');
{$I-} {turns off systelll error-checking}

Reset(IndexFile);
{$I+}

If

The Computer Journal / Issue #22

.KEY, and puts the names it finds there into an array
called KeyAray[1..200] and the record numbers into
another array called IndexAray[1.200]. These two arrays
make up the table in memory that is searched to find the
appropriate record number for any name that's
requested.

From this point on, I'll offer less explanation for each
procedure, just pointing out the logic that may not be ob
vious, and the syntax that might be unclear to someone
starting out with Turbo.

READISAM()
ReadISAM is the procedure to read the ISAM file, and

the arguments (parameters) passed to it include the file
name and the key field being sought, with the third
argument-the ReturnCode-that goes back to the
calling module to identify an error.

First the function FINDEXO is called, and FINDEXO
will contain either the value of the record number for the
key field that's wanted or a return code that indicates an
error. If it's an error (less than zero), ReadISAM just
goes back where it came from with ReturnCode the same
as what came from FINDEX(). If it's a legitimate record
number instead, then the ISAMFile is accessed and a
record read from ReturnCode -1. The reason for the -1
is that records are numbered in a Pascal file starting at
zero, but we tend to think more logically when the first
record is numbered "one". If this little irregularity is
tolerated here, then all the rest of the logic can believe
that the first record is #1, the second is #2, and so on.

If the ISAM file isn't on the disk, the ReturnCode is
changed to -3 before control is returned to the calling
module, letting it know what the problem was. (A Retur
nCode of -2 from FINDEXO meant the key field wasn't
found when the index was searched. This way, the
original calling module can be coded to respond to
whatever number of error conditions is necessary.)

WRITEISAM()
WriteISAM is the procedure to write a record to the

!SAM fIle. The parameters it needs are the file name and
the key field. The only error condition that's anticipated
here is the possible absence of this file from the disk, and
that's not really an error-it just means we haven't writ
ten the first record yet. Thus the code here tries to
RESET the ISAM file, and if that doesn't work it will
REWRITE the file, starting it from scratch. The same
logic follows when the procedure writes the key field and
record number to the .KEY file. If there's an error, the
.KEY file hasn't been started yet and it's handled the
same way.

Along with writing the record to the .KEY file, the
same information is added to the index table arrays, af
ter incrementing MaxKeys appropriately. Thus,
whenever a new record is written to the ISAM file the in
dex is updated in the .KEY file and in memory at the
same time. The index table will remain valid without
having to read the .KEY file into memory again.

REWRITEISAM()
RewriteISAM is very similar, but the differences are

important. In this case an error that will need to be dealt
with is very possible, so one of the parameters is again

33

ReturnCode. Since RewriteISAM is used to update a
record, not write one in the fll"St place, it is indeed a
problem if the file doesn't exist on the disk. Also, in this
case we don't want to seek the end of the file and write a
record there, we want to seek the position of the
requested record and rewrite that same record. Remem
ber to subtract 1from the record number-obtained from
FINDEX()-to account for records that start at zero.

Having written all the code that's required to accom
plish these basic tasks, making the program do
something useful is easy. The following procedures are
the demonstrations, and I'll continue to point out ususual
syntax and logic, but skip the simple stuff.

READ DEMO
Intended to be used in this program only, ReadDemo

doesn't receive any parameters from the main logic
which calls it, but it must pass some parameters to the
procedures that it calls. First off, ReadDemo asks for the
name that identifies the record to be read. Then it calls
ReadISAM to read the right record from the file, and
displays the phone number to the CRT. Along the way it is
prepared to deal with values of the parameter Retur
nCode that indicate the following problems in reading the
file:

Return Code Problem
-2 Key field not found when the index was

searched.
-3 The ISAM file didn't contain a record for

that record number.

(A return code of -1 was used by LoadKeys to indicate
that the .KEY file wasn't found. Though these errors
could have been called -1 and -2, I prefer to associate
certain RetumCode values with specific problems, so I
don't usually re-use the same numbers, even in different
procedures.)

The statement "Read(Choice> ;" is used just to hold the
displayed phone number on the screen until the user en
ters a RETURN.

ADD DEMO
Because all the nit-picky details are handIed by the

procedures that were coded earlier, this one to demon
strate adding a record to the ISAM fIle is very short and
sweet. It asks for the name (key field> and the phone
number, then places them into the record for the ISAM
file and writes it. Notice the section of code that starts out
with the words "With ISAMRec Do" .

The problem that's possible when a record i.s added, of
course, is that there might be a duplicate of that key field
in the index already. If we were to enter a phone number
for someone, forgetting that there was already an old and
incorrect one there, the computer would never deliver
unto us the correct phone number. Each time the index
was searched and a matching key field found. it would
point to the record containing the old number.

Therefore, the proper way to change a field is with the
CHANGE feature, not by adding another record with the
same key field. This procedure does a quick check of the
index-using FINDEXO-to be sure that a key field
doesn't already exist before a record is added to the file.

34 The Computer Journal / Issue #22

Count := ";
With IndexR-= Do

Begin
Repeat

Begin
Read(IndexFile,IndexRec);
Count := Count + 1;
KeyArayCCountJ := KeyField;
IndexArayCCountJ .- RecNu.;

End;
Until EOF(IndexFile);

End;
HaxKeys := FileSize(IndexFile);
Return:
Close(IndexFile);
End;

{lOAd values fra. .KEY file into}
{arrays used for INDEX tAble }

{deter.ine hCM taany records in file}

I'

{locate the right record}
{read it, then close file}

{file not found - bAilout}

-1);

I[)Result <> " then
Begin

ReturnCode := -3;
Goto Return;

End;
5eek(ISAHFile,ReturnCode
Read(ISAHFile,ISAHRec);
Close(ISAHFile);

Return:
End;

Procedure ReadISAH(FileNa..:AnyFile;ReadKey:Na..;Var ReturnCode:lnteger);
Label Return;
Begin

ReturnCode:= FINDEX(ReadKey,HaxKeys);
If ReturnCode < " then Goto Return;
Assign(ISAHFile,FileNa.. + ".ISA");

{$I-}
Reset(ISAHFile);

{$I+}

If

Procedure WriteISAH(FileNa..:AnyFile;ISAHKey:Na..);
Label Return;
Begin

Assign(ISAHFile,FileName + ".ISA");
{$I-}

Reset(ISAHFile);
{$I+}

If IOResult <> " then Re.rite(ISAHFile);
Seek(ISAHFile,FileSize(ISAHFile));
Write(ISAHFile,ISAHRec);
Assign(IndexFile,FileName + ".KEY");

{$I-}
Reset(lndexFile);

{'SI+}

If IOResult <> " then Re.rite(IndexFile);
Seek(IndexFile,FileSize(INDEXFile);
HaxKeys := HaxKeys + 1;
With INDEXRec Do

Begin
KeyField := ISAHKey;
RecNum := FileSize(ISAHFile);
Write(lndexFile,INDEXRec);
KeyAray[HaxKeysJ := KeyField;
IndexArayCHaxKeysJ .- RecNu.;

End;
Close(ISAHFile);
Close(IndexFile);

Return:
End;

!~

Procedure ReWriteISAH(FileNa.e:AnyFile;ISAHKey:Na..;Var ReturnCode:Integer);
Label Return;

The Computer Journal / Issue H22

Begin
ReturnCode : = liJ;
Assign(ISAMFile,FileHame + '.ISA');

{SI-}
Reset (ISAHfli Ie);

{SI+}
If IOResult <> e then

Begin
ReturnCode := -1; <file not found - bailout}
Gato Return;

End;
Seek(ISAHFile,FINDEX(ISAMKey,MaxKeys)-l);
Wr i t. (ISAI1Fi 1e, ISAf'lRec) ;

Return:
Close (ISAI'1Fi Ie);

End;

Procedure ReadDe.o;
Label Return;
Var ReturnCode : Integer;
Begin

Write(~JAJ~M,'EnterNa.. ta Read: ');
Readln(Na_In);
ReadISAM('PHONE',Na_In,ReturnCode);
Case ReturnCade Of

-2: Begin
Writ.ln(AJAJ~M,'Error - KEY NOT FOUND IN INDEX');
Gata Return;

End;
-3 Begin

Writeln(AJAJAM,'Error - RECORD NOT FOUND in lSAM FILE');
Gata Return;

End;

35

End;
With ISAMRec Do Writeln(~JAJAM,'Phone NuMber:
Write(AJAJAM,'Press <RETURN> ta Continue••• ');

Return:
Read (Choice);

End;

, , ISAl'lPhone) ;

If a ReturnCode comes back that indicates the key wasn't
found, it doesn't imply an error this time, it means
everything's OK to proceed. Isn't it great the way we can
use a function like that whenever it's needed!

CHANGE DEMO
ChangeDemo is very similar, but this one requires that

a key field MUST exist before it's legitimate to continue.
Obviously, it isn't possible to change a record that hasn't
been written to the file yet, and any attempt to access a
nonexistant record would certainly result in an II error
that would crash the program but good (attempt to seek
beyond EOF) .

DELETE DEMO
By now, this one last procedure needs little or no ex

plaining. It simply does a re-write of a record, replacing
the phone number with a message that says " ••• Deleted
•••". In actual practice on large computers, records are
not really deleted physically from an ISAM file by an ap
plication program, but simply marked with a user
selected "delete character" in a user-selected position in
the record. A system utility program is occasionally used
that will put the file back into physically-sequential or
der, working in all the records that have been added, and
leaving out the ones that were marked for deletion.

Assuming that deleted records won't amount to enough
disk space to cause problems, this procedure might be as

far as you would want to go in your own applications. In
fact, in some cases, it might even be an advantage to
leave deleted keys in the index. In this program, for
example, a phone number can be deleted if it turns out to
be a wrong number-no point in continuing to use it-but
then the deleted field can be replaced with the proper
number at a later time by using the.CHANGE feature.

Closing Comments
That's about all you might want to know about this

program to simulate Indexed Sequential Access Files
with your micro. If you're NOT a beginner, though, you
may have spotted some possible improvements already,
and I couldn't let you just sit there and smirk without
pointing out that I, too, have thought of some. I'll take up
just a little more room to point out one potential upgrade,
and I welcome suggestions from anyone. This program is
surprisingly fast and capable, but it can be made even
more so at a cost of somewhat increased complexity.

Binary Search
If there are to be a limited number of records in the

ISAM file, say, a couple of hundred friends' phone num
bers and addresses, a sequential search of the index
array (such as in FINDEX) will be tolerably fast, and
requires very little room in the program. If this principle
is to be applied to an application program that will keep
track of thousands of records, then it would be worth the

36 The Computer Journal / Issue #22

Procedure DeleteDemo;
Label Return;
VAR ReturnCode: Integer;
Begin

Write(AJ-"J"I'I. 'Enter Name to Delete: ');
Readln(NameIn);
If FINDEX(NameIn.l'laxKeys) <0 then

Begin
Wri teln (--'J-~'J"I'I'Error KEY NOT FOUND IN INDEX - Cannot DELETE');
Delay(3000);
Goto Return;

End;
With ISAl1Rec Do

Begin
ISAl'lPhone := '*** Deleted ***';
ReWriteISAI'I('PHONE',NameIn,ReturnCode);

End;
Return:
End;

{ A BEGIN like this, without a procedure or function na.., indicates the }
{ start of the main program logic. The program actually starts here, and}
{ calls previously-coded procedures and functions as needed. }

Begin
LoadKeys('Phone',l'IaxKeys.ReturnCode);
If (ReturnCode = -1) then

Begin
Writeln('Unable to locate KEY file ••• returning to system.');
Goto Stop;

End;
Start:

Write(*2b' ISAI'I Phone File Example [Q=Quit R=Read'A=Add I>=Delete C=Change
] ,) ;

Readln (Choice);
Choice := UpCase(Choice);
Case Choice Of

'Q' Goto Stop;
, A' AddDetRo;
, R' ReadDemo;
'D' DeleteDemo;
'c' ChangeDemo;

End;
Goto Start;

Stop:
End.

Procedure AddDemo;
Label Return;
Begin

With ISAl'IRec Do
Begin

Write(-"J-"J"I'I,'Enter Name To Add: ');
Readln(ISAI'IName);
If FINDEX(ISAl'lNa-e.l'laxKeys) >0 then

Begin
Writeln('''J-''J'''I'I,'Error - DUPLICATE KEY - Cannot ADD ');
Del ay (3000) ;
Boto Return;

End;
Write(AJAJAI'I,'Enter Phone: ');
Readln(ISAI'IPhone);
WriteISAI'I('PHONE',ISAI'IName);

End;
Return:
End;

Procedure ChangeDemo;
Label Return;
VAR ReturnCode : Integer;

I,~

i~

The Computer Journal/Issue 1/22

Begin
Write(~JAJAM,'EnterNa..: .);
Read(Na_In);
If FINDEX(Na_In,MaxKeys) <8 then

Begin
Wr i tel n C'JAJAM, • Error - RECORD NOT FOUND - Cannot CHANGE');
Delay(38S0);
6oto Return'

End;
ReadISAM('PHONE',Na_In,ReturnCode);
Wi th I SAl'lRec Do

Begin
Write(AJAJAM.'Old NuMber is: ',ISAMPhone);
Write(AJAJA",'Enter New Number: ');
Read <ISAl'lPhone);
ReWriteISAM('PHQNE',NameIn,ReturnCode);

End;
Return:
End;

37

extra programming cost to use a binary search of that in
dex instead.

Actually, two major changes would be needed. The in
dex would always need to be sorted into ascending or
descending order (based on the key fields),to use a
binary search. This sort would have to be done each time
a record is added to the fIle, before the index is accessed
the next time.

Second, the search itself would have to be re-written a
little. The details of all this are a little beyond this par
ticular article, but for those budding hackers who haven't
already added the binary search to their bag of
programming tricks, I'll give a few hints, at least.

Begin by determining how many entries are in the
array (MaxKeys, in this case). Assign a variable called
FINISH the value in MaxKeys to start with, and initialize
a variable called START to 1. Add START to FINISH and
divide by 2 to find the middle of the array. Compare the
value in the middle to what you're looking for, and see if it
matches. If it does, the search is over already.

If it doesn't, determine whether the value you found is
mGHER or LOWER than the one you're looking for
(that's why the array has to be sorted!). If it's higher, set
FINISH to a value that's one less than the subscript you
just checked. If it's lower, set START to one more than
the subscript you just checked. Now, start over again
with these new values for START and FINISH. Sooner or
later, that middle element you check will be the one
you're looking for.

It usually turns out that it's sooner than you expec
ted-a binary search is FAST. The reason is very simple
(and you'll probably catch on real quick to why it's called
what it is). After one comparison, you're able to
eliminate fully one-half of the possible elements as being
either higher or lower than the one you're looking for. Af
ter the second comparison, you're able to eliminate half
of the ones that were left. It turns out that it takes only 16
comparisons (or fewer!) to find an element among an
array of 65,536 elements. Using a linear search, it would
take-on average-16 comparisons to find an element
among an array of only 32 elements.

In actual practice, you won't find yourself getting
bored waiting for this program to find the right record
number for any reasonable size index, and the binary
search really shows its stuff the best when the numbers

are very large. On the other hand, a quick sort done only
after adding a new record to the ISAM fIle doesn't add a
lot of overhead, either. Just be sure to re-write the sorted
index me as part of the EOJ (End Of Job) processing as
you quit the program, so it won't have to be sorted again
each time the program is used. After all, you might ac
cess a me thousands of times without adding new records
to it, depending on the application.

(By the way, a QuickSort is a real jewel in Pascal,
using recursion. That might be a good subject for another
article.. .> •

MONITOR AND CONTROL
TEMPERATURES

MANAGE INDUSTRIAL
PROCESSES

MEASURE ENERGY
CONSUMPTION

CONTROL LAMPS AND
APPLIANCES

PROVIDE SECURITY
PROTECTION

PERFORM SCIENTIFIC DATA
COLLECTION

The ADC-l serves as a real world
interface for any computer or
modem with a RS-232 serial port.
This sophisticated yet easy-to-operate
data acquisition and control system
includes:

• 16 Analog to Digital Inputs - 12 bits
provide O.lmV resolution over ::-: O.4V.

.4 Digital Inputs for security and rotary
encoder sensors.

• 6 Switched Outputs for relays and low
voltage device control.

• AC Line Carrier Transmitter - controls
32 BSR X·I0 type remote modules.

• Owner's Manual with detailed
programming examples.

Sensors available from Remote
Measurement Systems include: light.
temperature. humidity. wind. sound.
soil moisture. ultrasonic ranging.
energy consumption and security.

The ADC-l - an exceptional
purchase at $449.

REMOTE MEASUREMENT
SYSTEMS. INC.

2633 East....e A.... E.. Suite 206
Sealll... Washington 98102

(206. 328-2255
~nd for complel.. ~pe£lfjC.UOb!lo
T..I..pho..... Vi,.. and M••tac:aJd

ordrrs welcome.

Letters
(Continued from page 4)

Still More On Soldering
James O'Connor:

I enjoyed your article in the Sep
tember/October issue.

I think that soldering dates back to
the Egyptians-for metals-and the
application to electrical circuits
probably dates to Faraday and his
contemporaties. Electronics is just a
minor off-shoot of electrical
engineering.

Your differentiation between
welding and soldering is a bit ex
treme. Most welding (not all) in
volves using a "welding rod" which
is melted and flowed between the
component parts to be joined. The
rod usually melts at a lower tem
perature than the parts, like solder,
but yes, the component parts melt
too.

On the other hand, metals when
soldered do dissolve into the solder,
a process which is similar to
melting. When thin films of solder
are used to join metals structurally
(brazing), you will find that
desoldering requires a higher tem
perature than the initial joining
because of the change in com
position of the solder due to dissolved
metals. The change is a couple hun
dred degrees in silver
soldered/silver brazed stainless
steel.

This effect is not very noticeable in
most electrical connection soldering
because the quantity of solder used
is so great, compared to the surface
area of the joint, that the concen
tration of dissolved metal from the
joined surfaces never gets very high.
However, it does become noticeable
at times, such as desoldering a DIP
or socket from a board, where the
pins are reasonably tight in the holes
in the board AND the plating/con
ductor on the board lines the walls of
all holes.

Personally, I use a 7% watt iron
for all my electronics work. I have a
high power iron (15 watt> for use on
heavy duty connections-8 gauge
wire to a lug on a transformer, etc.

I'm surprised that you made no
mention of the gallium and indium
based special electronic solders.
While the hobbiest isn't liable to use
these, he should know that they
exist, and that there are problems in
trying to bond lead-tin to the

The Computer Journal/Issue #22

speciality solders or to parts "con
taminated" with them.

In your review of "Sources", you
might add a mention that Heath sells
a kit for learning how to do elemen
tary electronic soldering-a board,
parts, and instruction manual. That
kit was my starting point and I still
have the manual.

Dave English
Orange, CA

Dave:
Thanks for the comments, Dave.

Actually the Egyptians were also the
fIrst to do VLSI (Very Large Scale
Integration) they just happened to
use large cut stones instead of logic
gates. But seriously, I wanted to
delineate welding from soldering
because I have encountered novices
who were sure that soldering was
just a wimpy form of.welding. The
result of that misconception was a
tendency to overheat connections in
the belief that insufficient heat was
the cause of their problems. In the
old days welding and forming were
done concurrently so that the high
heat aided both processes, for
example the gun barrels of the
famous Brown Bess muskets carried
by Revolutionary War soldiers were
formed and welded from a sheet of
flat metal by means of the high tem
perature of the gunsmith's forge and
a forming block. Today changes in
shape would be a deformity so the
welding rod which melts at a slightly
lower temperature prevents that. As
you correctly point out, it is still
welding that occurs, but more on the
surface than throughout the pieces.
Supplying and controlling the
precise amount of heat is very
similar to soldering.

Yes, indeed there is a chemical
bond formed during soldering and it
can affect the temperature required
to de-solder a connection. For elec
tronics work my experience has
been that this bond is not much of a
problem if most of the residual
solder can be removed. As you note
there are situations where that is dif
ficult due to tight quarters. As as
aside, this bonding effect is also
present with chemical 'glues' and
shows up dramatically in that most
glues produce the strongest possible
bond with the thinnest possible glue
layer. &realled 'Super Glues'
(cynoacrylate) exhibit this to the ex-

HI

i~

The Computer Journal/Issue #22

treme, remember the TV ad where a
man is suspended from a beam with
just one drop, if they had used two
drops he might have fallen. ;nus is
directly opposite to the intuitive
feeling that if a little is good then
more is better.

7lfz Watts!!! I had heard of such
low power irons but had to check my
catalogs to determine that, yes, they
are available. Your successful use of
them is testimony to the degree of
proficiency you've developed. Size
and shape of the iron's tip along with
the wattage rating ultimately
determine the tip's temperature so
there is a wide range of suitable
irons that can be used, still I would
stick with the recommendations
made in the article for anyone just
getting into soldering.

Specialty solders are used by
people who do craft type
metalworking and in industrial ap
plications but in my experience are
very rare in electronics work. For
tunately, most articles that I have
read about these solders do a good
job of explaining where, when, why,
what and how to use them and I en
deavored to model the series on elec
tronics soldering on this principle.
The companies that sell these
solders also provide good technical
brochures about them.

Good suggestion about the Heath
Soldering Course, Catalog No. EI
3133 list price $19.95, I was not
familiar with this particular course.
Heath's educational courses are in
variably a good investment. In some
respects the Soldering article and
the two follow-on articles cover
much the same material, so Com
puter Journal readers may want to
use them as a psuedo course in'
soldering. Also, those familiar with
Heath's kits will probably detect the
fact that I diverge from and expand
upon Heath's usual instructions
about soldering. By all means, CJ
readers should obtain a copy of
Heath's catalog and feel confident
about attempting any of the kits or
educational products.

James O'Connor
Randolph, MA

39

so Software, Inc., maker of the original

CP/M-aD CLanguage Development

System, knows

Time is precious
So the compilation, linkage and execution
speeds of BOS Care the fastest available. even
(especially') on floppy-based systems. Just ask
any user' With 15.000 + packages sold since
1979, there are lots of users ...

New! Ed Ream's RED text editor has been
integrated into the package. making BOS Ca
truly complete. self-contained Cdevelopment
system.

Powerful original features: COB symbolic
source-level debugger. fully customizable
library and run-time package (for convenient
ROM-ing of code). XMODEM-compatible
telecommunications package. and other sample
applications.

National CUser's Group provides direct access
to the wealth of public-domain software written
in BOS C. including text editors and formatters,
aas·s. assemblers. Ccompliers. games and
much more.

Complete package price: $150.
All soft-sectored disk formats. plus Apple
CP/M. available off-the-shelf. Shipping: free. by
UPS, within USA for prepaid orders. Canada: $5.
Other: $25. VISA. MC. COD, rush orders accepted.

BD Software. Inc.
POBox 2368
Cambridge MA 02238
617·576·3828

40

66BMON"
Software In-Circuit Emulator
Links your CP M computer with any l80
based computer or controller that you may
develop All thaI IS needed is BMON, 8K of
ROM space and a handshakeable bi
directable I; 0 port lelther RS2320r Paral
lel)

Features:

-Full program development debugger
with Breakpoints. Snaps, Stops, &
Walts

-Single Step program execution.

-Download !lIe from CP/M system to de-
velopment RAM

-Upload Memory from development
RAM to CPt M disk.

-Two verSions Master BMON runs in
your CPt M system. Slave BMON runs
in your larget system.

Note: ReqUifes Microsoft's M80 & L80
assembler & linker to setup Slave
BMON

8" SSSD Dlsl< contammg Master
aMON. Slave aMON. CONSOLo
aMON/O. CONSOLIO. and Users
M~~/~~%

Shipped Via prepaid UPS
-No COD or PO. Box

Check or Money Order to:

Barnes Research & Development
750 W Ventura St.
Altadena. CA 91101

(818) 794-1244
CP'M rS a (rade"nark of D,glfal Researcn Inc
\.430 & i..~O are traDemarKS of Microsoft Inc

RJI1 TJEAPF!E1+. III MdIe

DOS 3.3 VERSION $25
OR PRODOS VER.

BOTH FOR S39.95
ADD S2.00 POSTAGE AND HANOUNG

10 DAY MONEY BACK GUAIlANTEE

4"LI ~ •• ~.'''t.rd trl..... r.
ot ""Ll CO.PIIllr lac.

1. Real lcterpreter. not a pre-proces.or
2. WHIll-!NDWHILI and REPEAT-UNTIL lOOP.
3. Tru. ;r-THIN-ILSI-INDlf (U010, WHIN)
4. PRI~T.USING, fILl, MIRGI, RANDOMIZB
5. PRI~T and TAB co•••nd. work ln KIRKS
6. 80 colu.a. supported on lIe and lIe
7. full editor With AUTO-~UM and RINUM
8. Faat SORT, SEARCH and I~STRS co••end.
9. lOX, IOXFILL, DRAW.USI~G ood SOUND

to. Llstlnc. are l.odeoted auto.atlcally
11. DISK co••aod reptaces DOS', CHRS(4)
12. JJEFI!fB ud PRRrOR'" naaed procedure.
13. 99" upward eoapat1.ble wltb Apple.oft
14. All coa••od. eotered aor•• lly, ao ~'.

15. lOa', ot •• t1..tied user. world wld~

16. FRII oew.letter available to owner.
t7. Me••• your Appt. ioto • HIW ••cbiD.!~

MAIL CHECK TO: JOHH BlANKENSHP,
P. O. BOX 471304, AnAHTA, GA 30312

Art: Your prompt response is very
much appreciated.

Good Grief! Looking at your back
issue list is like finding buried
treasure; what a kick. I'm enclosing
a check for all the listed back issues
and a two year subscription.

May you prosper.
Interests, Equipment, etc. We're

principally Z-80, CP based. There
are two homebrew units and an
Ithaca Intersystems system with
front panel. Also, have a little Z-8
(Circia) and a yet-to-be-assembled
MicroAce. There's a Godbout 68K
system languishing in storage as a
result of an abortive "bright idea";
the collapse of the oil business had
much to do with it. I'm interested in
wringing the maximum from the Z
80/5-100 system and am looking for a
reason (excuse?) to make a foray in
to 68K country. Am determined to
know what goes on inside and look to
your journal to aid and abate tje
quest.

Thanks.
Chuck Henderson
Midland, TX

Remax Drives
Bill Kibler:

I just read your column in the Sep
tember-October issue and im
mediately picked up on a comment
about Remex disk drives. You
referred to modified drives. I bought
a couple of them and have had
nothing but trouble. I used them on
an AMPRO Little Board and found
that it was almost impossible to
verify a disk. I concluded that there
was something sloppy about either
the mechanics or the electronics or
.both, but didn't quite know what to
do about it.

Could you let me know what you
did to modify the beasts? I enclose a
SASE for a reply. I certainly will ap
preciate it.

Frank Oechsli
Richmond, CA

Dear Frank:
Thanks for the fan mail, and

hopefully this information will get
you going. Please send us any NEW
information you might get after
playing with your drives.

The Remex Disk· drives that are
currently available for as little as $39

The Computer Journal I Issue #22

have many problems, but can be
made useable. In the July-August
issue of Computer Journal I covered
several important solutions to the
problems. Other magazines have
also commented on some solutions
(Micro Cornucopia #26), which agree
in part with my findings. These
drives appear to be made rather
marginally and without much
quality control. A solution may in
volve one or more of the following:

A) The 12 volt supply needs are
much larger than most, and will ex
ceed the listed ratings. Limiting the
number of drives per power supply,
as well as adding more capacitance
(2OOOUfd) has cured poor stepping
problems.

B) Problems with noise have been
noted, and in one case shielding with
steel helped. I found that adding
more bypass caps (.022) can also
improve their operation (the PC
board doesn't have enough).

C) Precompensation has been
noted as causing problems. Use
125ns or none at all. The schematic
shows some minor value changes in
the read circuit design and I suspect
the design is inadequate. Adjusting
R27 can improve the operation,
sometimes. PLEASE NOTE that
most of my errors have been READ
not WRITE errors.

D) Several signals are fed directly
off of the 12V line and without proper
filtering will cause false write
triggering and possible speed
problems. Adding 0.01 and lo-20Ufd
across the input power socket can
help.

E) Speed regulation is controlled
by an MJE210 and this device is in
sulated from the case by a mica
washer. Excessively tightened
screws will short this device and
cause the drives to run full on
(loosen screw). I had one of the tran
sistors fail completely and replaced
it.

F) The guides or rails on which the
head rides can become sticky and
may need cleaning and Oightly)
oiling. Head alingment has checked
out good (usually). with only
azimuth being occasionally off (play
with rails to correct),

G) Check all mechanical and elec
trical connections as several units
have had broken, loose, and poor
connections. I found one loose wire
on a motor unit and had to

II

41

arctecfsysterns
9104 Red Branch Road

Columbia, Maryland 21045
(301)730-1237
Telex 87-781

~""''''''''''''''''._~~~.~:

.r--r-.» i',..'
t.:JCI I III II
THE AUTONOMOUS ROBOT

IS NOW PRICED FOR
EVERYONE!

Either way,
Buy a piece of tomorrow

TODAY!

CALL or WRITE For Our FREE
Brochure.

Buy each subassembly as a kit
or factory assembled and create
your own GEMINI Robot.

"recrimp" it.
Remember, these units most

likely have poor quality control, and
any type of problem could be en
countered. The design appears to be
minimwn, and external help <larger
and cleaner supply voltages) will be
necessary.

One of the most important points
in fixing the problems with these
drives is networking. This means
talking and writing to others with
both questions and solutions. Only
through networking can both
manufacturers and users keep
poorly designed units either off the
market or at least running.

Best of luck.
Bill Kibler
Sacramento, CA

Reconsider TCJ's Emphasis
Your letter seems to indicate an

emphasis on robotics, real time data
collection and process control, at the
expense of "business" topics- yet
your back issue topics suggest a
much broader base. Please consider
that "system integration" issues in
the vertical market business world
are also required for practical ap
plications on the factory floor, and
thus are a common area of interest
that can expand your subscription
base. As micros move into the
sphere of large MIS departments,
DP types are having to cope with
systems subjects formerly handled
by small outside systems houses.
This is a big market for you! Subjec
ts include multi-user, LANs, har
dware integration and interfacing,
micro multi-user operating systems,
database, etc. The recent launch of
Multi-User magazine was a disap
pointment. Maybe you can fill the
gap.

L.A. Wilkinson
VanNuYS,CA

Editor's Note:
I appreciate this kind of feedback,

see this month's editorial for my
comments. •

With an unusually powerful set of
tools and an unusually easy way of
helping you to use them.

The total software environment for
IBM PC, TRS-BO Model 1,3,4 and
close friends.

-Personal License (reqUired):
-':0lITH ..,.. DlIk (IBM PC) ..•• t:MLI5
-.ownt ..,..DlIk (TIlS-«ll, 3at 4) 1_

-Personal License (optional modUles):
FOIlT1tCOII COlIlIIlUIlicDo mocIute • • • • ...
U1'LITleS ...
GAMEl ...
DPOT·z u~lIY'*" ,..... ...
DATAHANDLER , " ...
DATAHANDLER-l'LUS (PCanty,l2IK req~ ...
I'ORTHWRITE wonl~ •• . • • •• 17S.OO

-Corporate Site License
Extensions ~ $1,100

-Some recommended Forth books:
UNIlDSTANDING POIlTH (oweniew) • • • • 2.11
STARTING FORTH(~) . . . •• 1U5
TMlNIUNG FORTH (18ehnIque) , , • 15.15
BEGINNING FORTH Ire IolMSFOflTH) .,. 1L1l5

Shipping/llMdling & 1U extra. No relUm8 on eoIlwrw.
Ask your dealer to show you the world of

MMSFOATH, Of request our free brochure.

MILLER MICROCOMPUTER SERVICES
81 Lake $hen Ao.d. Natick. IIA 01710

tl17) 853-1131

FOR TR8-80 MODELS 1, 3 & 4
IBM PC, XT, AND COMPAQ

Which microcomputer word pro
cessor lets you create and edit
without retyping, but won't slow
down your creative process?
Knows when to capitalize the first
letter 'while replacing one phrase

, with another? Can outdent as well
':,. indent? Will do typesetting at

your command, even with propor-
~. tional characters, right justifica

tion and tabbed columns? Lets
you use the same (extra-eapacity)
data disks on IBM PCandTRS-80?
And eases your learning with
common-sense keystrokes, Help
menus, good examples and a pro
fessionally authored manual?

Hint: it can integrate to communi
cate from home to office, and will
interface with a database for form
letters, data tables, and more!

It's the professional's word pro
cessor for your IBM PC, Compaq,
or TRS-80 ~del 1, 3 or 4:

WHICH ONE? l

FORTHWRrrE
In

m!!&)§FORTH

42 The Computer Journal/Issue #22

I,

The AMPRO Little Board Column
by C. Thomas Hilton

Whether you are a hobbyist, or commercial
developer, often the desire for a small, yet powerful,
single board computer, (SBC), presents itself. Often the
choice for a good SBC is between commercially available
boards, or in-house manufacturing. This column will
present my personal choice for many SBC requirements,
the Ampro Series 100, or "Little Board~ ," microcom
puter. This system is no larger than a 5.25 inch disk drive,
so it can be mounted in the drive enclosure, and it
operates with very low current demands.

The Little Board is available in a number of forms. It is
available from Digital Research Computers as a kit, and
in a number of different configurations from Ampro
Computers. (See Figure One for vendor listing).

AMPRO Computers, Inc., 67 East Evelyn Avenue,
Mountain View, CA 94039 (415) 962-0230. THE source for
manuals, systems, and parts.
Digital Research Computers Of Texas, POB 461565,
Garland, TX 75046 (214) 225-2309. Little Board
kits and ZRT terminal card.
Integrand Research Corp., 8620 Roosevelt Ave.,
Visalia, CA 93291 (209) 651-1203 Cases, power supplies,
and wiring harness.
Colonial Data Services Corp., 80 Picket District Road,
New Milford, CT 06776 (203) 355-3178. Disk drives
and accessories.

Figure 1: AMPRO Series 100 and Little Board source list

When considering SBCs for industrial, instrumen
tation, or other application, one must consider how he
will develop the system. That is, what manner of
"development system" is also required to use the board
in question. I am using an Ampro Model 122 with my
Kaypro 4-84 as a development system. The '122 is a dual
48 track per inch, (48 tpi), microcomputer. It is a "ter
minal system." This means that it requires a terminal to
communicate with it. I use the Kaypro as a "dumb" ter
minal for development of Ampro projects.

The Little Board is a 64K, ZSO, system capable of sup
porting up to four Double Sided, Double Density, <DSDD)
disk drives with a standard Basic In/Out System,
(BIOS), or up to 88 megabytes of hard-disk storage, with
a modified bios. My Kaypro can handle only 10
megabytes of hard-disk storage. With a terminal the Lit
tle Board is far more powerful, and versatile, in my
opinion, than the Kaypro. In time, if Art allows me to con
tinue this column, we will explore the Little Board in
great detail. At this point, however, we will assume that
you are either looking for a well supported SBC, and have
chosen the Ampro Series 100, or I have convinced you of
how much computing enjoyment can be had with a Little

Board. This column will begin with the assumption that
you have either just received an Ampro Series 100, or Lit
tle Board. We will not repeat the material covered in this
column. New Ampro users should be advised to obtain
back issues of The Computer Journal to keep abreast of
all projects. If reader interest warrants, user disks, with
these articles and public domain software tools to per
form programming projects, will be made available. By
providing public domain software tools, at reasonable
acquisition costs, for use with this series, we will have
some consistency. I will not hide from my readers. I will
review reader contributions for this column, and answer
any questions I receive, quickly, and personally. Though
I have no connection with Ampro Computers, I feel my
function is to assist you in the understanding of, and use
of your Ampro SBC.

The Ampro Series 100 systems have two serial ports, a
printer port, and a disk expansion port. Owners of the
"Little Board Plus" also have a SCSI port which can be
used to interface to a hard disk and other devices. In this
series we will deal primarily with the generic 1A CPU
card as found in the inexpensive Little Board kits, and
Series 100 microsystems.

Out of the box the Series 100 "Bookshelf Computer,"
the recommended development system, is ready to run
once a terminal system has been prepared for its use.
Most people interested in SBCs have a system that can be
used as a terminal. Again, I use a Kaypro 4-84. In a like
manner most people have an assortment of cables in
reserve. I am a bit on the cheap side, and prefer to make
my own cables. Constructing a cheap and simple cable
will be the first project in this series. This is a bit
pedestrian for you old salts, but there are a lot of begin
ners out there who need a little help as well.

1. DB-25 RS 232-C Male Connectors, 2 each
(Radio Shack #'1:16-1547)

2. Six Conductor Cable, (Or Ribbon Cable)
(Radio Shack #'1:18-722 is usable)

3. Soldering Iron & Solder
4. Small hand tools, tweezers, etc.

Figure 2: Materials required.

Cable Construction
Assemble all of the materials noted in Figure two.

Before we get too carried away, let's force ourselves to
tolerate a little theory. The Ampro communicates with
the terminal via RS 232-C ports. In normal operation
"Port A" is the terminal port. This port is wired as "Data
Communications Equipment," <DCE). This is the format
we will use in building the cable. The Ampro end of the

i~

i'1fl

/

Priced from
$1295.00

10MB System
Only $1945.00

IBMlt, IBMcorp~ 10'''- .- -.»It..
TurboOQS-,~ 1QnC.... --=- ..
~T.c:;"'~" _~.-.c.

SupcrcaIc 2-.~ If'W; .~-.-...

9oNrld.1ntt~ I"C~ • A ..

~.~ ~ .
lMlJ«, Jnc

Softwar£ Inclu<X<t.

• PC-DOS Compatible IlQM.lIl()S boots
DOS2.)(and 3.)(

• i'Wd DISk Suppott
• T/_1I1 - Word P<OC_
~,-",~

spelling d1«l<er, and -.
"""YPlICIf:aYpt

E>c;lendIlbIt

• Floppy cponSlon to fOol~

• i'Wd dISk and taP£ ""'*""'"
• SCSI/PlUS'·__ 110

expansion bus

Boots 11M PC-OOS
(not Included)

• SCSI/PlUS~· multHnaster I/O
DP'nS60n bus

• SoftwM., Includ£d:

• PC-OOS compotJbIf: IlOM-8IOS boots
DOS 2.)(and 3.)(

• Hard Disk support
.0PTlONS:

• ExpanSion bOard WIth:

• 128 or 512K add,tJonallV.M
• 2 Sync/Async RS232/422

","01 ports
• IIattery backed Real Tim-. Clock
• 8087 MOttl Ccrf'rocossor
• Butfer£d 1/0 Bus

• STD Bus AdaPter
• UtJliba source code

• Turt>oOOS / N£_~

• Three OrMS the COMPUTING POWER of
aPC

• O<lta and AI., CompatJbl<: Wlttl IBM PC.
runs "MS-DOSg~" programs

• 8 MHz 80186 CPU, DMA,
Countertnm-.rs, 128/512K IV.M zero
walt ,tata, 11>-1 28K EPtlOM

• """nl/ MICrO Aoppy Controller
(1·4 Onv£s, 5,ngl'" DouOI<: Of:nSlty,
1-2 SI<Xd, 40/80 track)

• 2 RS232C S£nal Ports (SO -38,400
t>aud), 1 C.,ntromes ?nnt." Port

• On"" 5.75 x 7.7S 'ncll£S, mounts
d""etlY to a 5-1/4' dISk d_

• ~ R.,qu".,m£nL • 5YDC at 1.25A;
+ 12YD(al05", On OOMd ·12V

COnverter

COMPUTEPS INCCPPOPATEO

BOOKSHELFTM ~~l4l.1 200
'., COIIIINtd, hitll quJity, ¥CrAdic PC-DOS .,...

• Data and AI<:~ WlttllBM
PC-DOS 2.)(and 3.)(

• Runs "M5-OQS gala1C" programs
(Obosc I~ _plan, Wordstal',
Sypercalc 2, Tumo Pascal, Fortran 77,
Microsoft C. Latbc., C. IBM MactO
_, Intel COIl¥ltIf:n & toolS,

GoIIIlasic, n:.__l

• Works with any RS232C ASCII termiNI
(not included)

• Compact 7.3 x 6.5 x 10.5 inch.,.,
12.5 peunds, all metal constructIOn

• iIlIS£d on lJttk Boord/186
• 5121< RAM,no wait stat.,.
• 1Wo RS232 _ pelrts

• en.. C,,"!Ton1CS pnnter POrt
• One or two 360 Kb I\oppy dnva

• 1OMS Int"""" hard dISk dnw: opbon

DI5'I.-nOIlS

~FACTOIlW.SA,(l)41-<JOl8, MlCROCOI*I.lrutS, Ib1 11~
Tl.X 22408 _ CfN11lE IllAZIL: CNC-DAto. L.EA!lf.' ..'1)4

E1£CTIlONIQUE lLW'ERfUR, (041) 23-4541, (41) 2bll-2262, Tl.X041~_
Tl.X 4262' CNWlA: D'INACOMP llANIIIT, (D3) 60020-~ l\.< .j~"

COMNmS'lSltMSlJD,(6041872-7737 ~~:;:.) '>nlft.
II'IGIAHI), QUANT S'ISTEMS, Tl.X 1213941Sl1ML,~"t~

(01) 2~3-11423, Tl.X 946240 REF. 19003131 lJD., (31 4~'1>95, l\.< 304'..,._
~ EGAL-, (1) 502-'800, Tl.X620893 1\8AKv., (081 54-20-ill 'La '1'01~

V-, XENIOS NQIlMIlJ1CA, 593-0822, COtITACT~CClMr'\J't~ ...
Tl.X 50364A11S1MUk ASP TEL. (4151 962-Q2)Q TtlU -.olOl

I Little Board™/186••••$495
High Performance, Low Cost PC·DOS Engine

Kaypro End: 1,2,3,5,6,7,8,20

o 2. Connect A2 to K2

o 3. Connect K3 to A3

The Computer Journal/Issue #22

Ampro End: 1,2,3,5,7,20

cable must be wired as DCE, but your specific terminal
may require a "Data Terminal Equipment," <DTE),
format. Standard communications cables consist of 25
signal paths. Not all of these' 25 lines of a standard cable
are supported by the Ampro/Little Board. We need only
six actual signal paths to get our system on-line:

o 1. Connect Kl to Al (One conductor to the same pin on
each end, starting on the Kaypro end.)

o 6. Connect K7 to A7

1. Data Input
2. Data Output
3. Data Terminal Ready
4. Clear To Send
5. Signal Ground
6. Equipment Ground

In the list above, Data Input refers to serial data being
received by the Ampro from the terminal. Data output
refers to serial data being sent to the terminal. Data
Terminal Ready and Clear To Send are "hand-shaking"
signals to assure that the terminal is listening when it
should, and vice versa with the computer. The signal
ground is the common return path for all data signals.
The equipment ground path is generally used to shield the
cable, and assure that both the terminal and computer
are of equal electrical potential.

In this construction project we will use an "A" to in
dicate the Ampro end of the cable. "K" will indicate the
Kaypro end of the cable.

A statement such as "K2" refers to the Kaypro end of
the cable, pin number two. In a like manner a reference
to ..A20" would refer to the Ampro end of the cable, pin
20. Place a mark in the space provided when you have
completed each assembly sequence.

Prepare your connectors and cable for assembly at this
time, marking one end with an 'A' for AMPRO END and
the other end with a 'K' for KAYPRO END.

o 7.ConnectA20toK20

o 4. Connect A5 to K5 (pin K4 and A4 are not connected)

o 5. Connect K6 to K8 (On Kaypro side ONLY, here we
derme the unused DCD input state as active)

There are six connections on the Ampro end because
there are two ground paths. While only one ground path
needs to be used, we will use two. One is defined as

At this stage of the assembly only the following pins
should be connected, all others should be left vacant, un
connected.

44

equipment ground, the other as signal ground. In both the
Ampro and the Kaypro these lines are tied together.
Later we may wish to use this cable on another terminal
where the two ground systems are different, hence we
use the extra wire now, to avoid problems later.

The Kaypro has two extra connections as pin 6, signal
power path,< +5 volts), is used to define the unused input
DCD, pin 8, to its active state.

A good technician triple checks his work, even when he
knows he has done the work properly. Triple check your
connections now.

o 8. If you are using metal connector shields AND your
cable has a metal braid type shield around the wires,
connect the braid to the metal shield. If you are uncer
tain, ignore this step.

o 9. Insert the Kaypro end of the cable into the SERIAL
DATA PORT in the rear of the Kaypro. Consult your
Kaypro manuals if uncertain as to which connector this
is.

o 10. Insert the Ampro end of the cable into Serial Port
'A' at the rear of the Ampro. Consult your Ampro
manuals if uncertain of the port's location.

Assuming all of your cable connections are correct,
and you are proud of your work, allowing no sloppy
soldering, the assembly of your terminal cable is now
complete.

Going On Line:
The Ampro Series 100, Serial Port 'A' is configured for

9600 baud without hand shaking, as a default assignment.
Nearly all of the Kaypro communications programs to be
found do not support hand shaking, nor do the programs
found in Kaypro support magazines. Hand shaking is
very important in data communications. Without it
characters will be lost in transmission and data tran
smission speed will have to be reduced in an attempt to
achieve reliability. The next segment of this article will
concern itself with a high speed, but simple "dumb" ter
minal program.

Most Kaypro communications programs may not be
used above 2400 baud. This is due to the programmer's
assumption that higher speeds were not possible. In fact
their programs did not implement the system's hand
shaking facilities. KTERM may be run at 19200 baud.
Higher speeds are possible, but the Kaypro CONFIG
program only allows up to 19200 baud. This is more than
fast enough to get the full power from your Ampro Series
100 microcomputer.

KTERM is available on disk preconfigured for easy in
stallation of the Ampro Series 100. Lacking that, compile
the Turbo Pascal, Version 3.0, program shown in Figure
3. Once you have assured that it has compiled properly,
place it on a newly formatted, Kaypro disk. Add to this
disk the Kaypro CONFIG program. From this point on
ward it is assumed that you have studied both the Kaypro
and Ampro System Manuals. If you have not studied
them, do so now.

The Kaypro "Serial Data Port" is connected to a Serial
InIOut processing chip, <SIO). This SIO is referred to as

The Computer Journal / Issue #22

SIOI on the Kaypro Series 84 systems. S101, Channel 'A'
is not supported by the Kaypro BIOS. It is, however,
initialized on power-up as the keyboard uses Channel 'B'
of this SIO. Our Program initializes Channel 'A' for its
own use, without disturbing Channel 'B.'

The Kaypro's default modem data transmission rate is
300 baud. It will have to be changed to the rate of 9600
baud. This will allow us to communicate with the Ampro,
whose default data rate is 9600 baud, long enough to
reconfigure the Ampro for higher data speeds. Use the
Kaypro CONFIG program, option 'M,' to set the Kaypro
for a 9600 baud default data transmission rate. Press the
Kaypro RESET button to assert the changes by writing
them onto the system tracks of your disk.

RunKTERM.

Insert the Ampro SYSTEM DISK into drive'A' of the
Ampro. With KTERM running, turn on the Ampro. The
Ampro log-on message may not be displayed properly,
but it should be readable.

Enter CONFIG

Use the AMPRO CONFIG program, option '6,' to con-
figure Serial Port'A' as follows:

1. 8 data bits
2.1 stop bit
3. even parity
4. 9600 baud
5. with hand shaking

When you have assured that the system is functioning
properly you may increase the baud rate to 19200, though
9600 is fast enough for most operations.

Changing Baud Rates
To increase the baud rate, or lower it, enter the Ampro

CONFIG program and set the desired baud rate. Install
the changes ON DISK only. Do not install the changes in
memory or communications will be lost. Exit KTERM
and use the KAYPRO CONFIG program to set the
desired baud rate. Press RESET on the Kaypro, and en
ter KTERM. RESET the Ampro and you should be on-line
again.

The Terminal Program
KTERM is a very simple program. It has no features

whatsoever. I have often been using the Ampro and found
myself changing disks in the Kaypro, instead of the Am
pro. This is the kind of terminal function I prefer.
KTERM may be easily expanded to suit your own tastes.

We begin our discussion of the Pascal program with the
first functional line of code. The entry:

{C-}

is a Turbo Pascal specific compiler option which inhibits
the interpretation of control characters by the program.
This feature is a must. Without it the host computer
would attempt to act upon any control characters input at
the console. We want the Ampro to to be sent control

II

,,,

The Computer Journal / Issue #22

Figure 3

(

HER HIT SOFTWARE

Pascal Progra~ Source File

Program: KTERH

Versi on: 1. Sa

Class Public Domain Utility

Author C. Th~s Hilton

Date: July 12th 1985

Hardware Requirements:
Kaypro 4-84
AAlpro Series 100. Hodel 122

Program Co..ents:
The ~aximum speed that known Kaypro c~nications

programs have been able to interface with the Ampro 122 has
been 2400 baud.

This dumb terminal program corrects the d~ects of these
progra~s by allowing the AMPRO 122 to cem.unicate with a
Kaypro 4-84 at 1925S baud, the ~aximum data transaission
rate allowed by the Kaypro CONFIG program.

Use the Kaypro CONFIG program to set the baud rate in the
KTERM working disk as the default data rate.

This program is in routine use, and shows no defects. See
the main text of this Application Not. for the AHPRO 122
configuration set by the AMPRO CONFIG program.

Use the A@, (null control code), to exit the program.
This is the only user_co...nd available, or needed for
particular application.

}

45

($C-) { Turn off control character interpretation by program }

type
workstring~string[ae]; { define a utility variable }

const
txrdy-4;
rxrdy=l;
datapart=4;
status=6;
DtrWait=$6B;
DtrRdy=$E8;

var
finis:boolean;
ch:char;

(define program constants
(transmitter buffer empty mask value
{ receiver buffer full mask value
{ SIO-l 'A' data I/O port assignment
{ SIO-l 'A' control/status port assignment
('Hey I'm Busy' DTR flag value
('Ready When You Are' DTR flag value

(set system variables

)

}

}

}

}

}

}

)

{-------------------------- Functions & Procedures ----------------------}

FUNCTION ReadStat:boolean; (turns TRUE if character received
begin

ReadStat:=«port[status] and rxrdy) <>S)
end; {of ReadStat}

}

46 The Computer Journal/Issue #22

DEALERS! SCHOOLS! USER GROUPS!
CALL FOR VOLUME DISCOUNTS

SUPER SPECIAL!!
5.25" HIGH DENSITY DISKETTES for use on IBM PC-AT

10/ $2.3S each. 100/ $2.20 each

Terms Add $3 shipping & handling for US. orders. Outside
USA add $10 to cover postage In Illinois add 7% sales tax or
prOVide resale certificate. Prices & terms subject to change
without notice.

HI!

It

i"

codes from the terminal, and to act upon them. Essen
tially we want the terminal program to make the Ampro
appear as if it were the only system in use.

Pascal TYPE and VARIABLE declarations, as shown
in Figure 3, are generic, and need not be modified for
systems other than the Kaypro.

The program CONSTANT declarations, however, may
be redefined for non-kaypro users, or owners of differing
models.

Function READSTAT does little more than determine
the the status of the receiver register of the S1O. Function
READCHAR polls READSTAT until the S10 indicates
that a character has been received. It will then input the
character. A logical AND is performed to mask-off any
parity bit. In some systems, and terminals, the parity bit
may trigger graphics characters.

Procedure INIT initializes the S10 (which the Kaypro
ignores, save for setting the keyboard channel) for data
communications. This set of code sets the data channel
for our default data format of an 8 bit data word length, 1
stop bit, and even parity. Consult a ZILOG manual for the
actual meanings of the codes shown. The operation of the
SIO is beyond the scope of this small program.

Procedure WRITECHAR simply sends a keyboard
character to the Ampro upon demand. Procedure CEN
TER centers the KTERM log-on message on the host 80
colwnn terminal.

The main program organizes all of the above functions
and procedures to perform the logical exchange of data
between the two systems. This includes the setting and
resetting of the hand shaking signals. A test is made for
an escape character, control @, (A @). If the escape
character is detected, as an input character from the
keyboard, the program aborts to the operating system.

KTERM is one of those simple programs that hardly
rate a comment, but are found in constant use. I use it ex
clusively with the Ampro, and cannot function without it.
Other programs have features that do not allow me to in
terface with the Ampro as if it were actually the host
system.

Configuring The System
If you purchase a Series 100 system, you will receive

T/MAKER~ ,ZCP~ ,the "FRIENDLY OPERATING
ENVIRONMEN'f$," and standard CPIM~ 2.2 as a "sof
tware bundle." Those who elect for other configurations
will have these bundled programs as options. The
TIMAKER package is a powerful set of applications
programs, in a single system. WordStar4 is not included
in the bundle as TlMAKER has its own word processing
system.

The Friendly system is configured with WordStar,
(WS), cursor commands. T/Maker, uses a more standard
approach. The CP1M version of TM is set to use cursor
control codes which are compatible with the ADM 3-A
terminal, and Kaypro computers. Three different sets of
cursor commands is at best, frustrating, especially if
your system has user definable keys, as does the Kaypro.

There are two options, either change the TM editing
codes, which is allowed by the system, to those of the
operating environment, or change the control codes of the
operating environment. As a WS user this was a hard
decision for me to make, especially since I use two dif-

$.95 $.n
1.09 .88

5.25" SSDD, SOFT SECTOR, w/hub ring
5.25" DSDD, SOFT SECTOR, w/hub ring

CALL TOLL FREE (orders only)

.~ 1-800-222-1248 II
in Illinois or for information

312-882-8315
AUTHORIZED WABASH DISTRIBUTOR

5.25" SSSD. SOFT SECTOR, w/hub ring $.98 S .91
5.25" SSDD. SOFT SECTOR, w/hub ring 1.18 .99
5.25" DSDD, SOFT SECTOR. w/hub ring 1.28 1.11
5.25" DSaD. SOFT SECTOR. w/hub ring 1.88 1.59
5.2S" SSSD. 10 SECTOR. HARD w/hub ring 1.18 .98
S"SSSD. SOFT SECTOR. Unformatted 1.79 1.59
8" SSDD, SOFT SECTOR. Unformatted 1.88 1.69
S"DSDD. SOFT SECTOR, Unformatted 1.98 ·1.89
3.S" SSDD. 135 TPI 2.79 2.59
3.S"DSDD.13STPI 3.89 3.69

~.~~ "Q8i:~IECtiKETTES
UNIOUE EASel-BACK CASE lunctians as
Ubra"l Box lor conv,nllnt. permanent
storage and easy dlsk,ne access 10 100

wabasH
•
Rivu1t':~;;. 77e

Milts aN Industry Standards ea.
Manufacturer of Magn,lic M,dia
lor Over 20 years BOXEO with ENVELOPES and LABELS
RlOnforced Hub Ring

iiiiiiiiiiiiiiii lJt,bm, Warranty .1!L 100

The Computer Journal/Issue #'J:J. 41

FUNCTION ReadChar:char; (read a character fro. 510 when char arrives
begin

repeat until (ReadStat);
ReadCh~r:=char(port[dataportland $7f)

end; {of ReadChar}

}

PROCEDURE Init;
begin
port[statusl:=$18;
port[statusl:=I;
port[statusl:=S;
port[statusl:=3;
port[statusl:=$0El;
port[statusl:=4;
port[statusl:=$47;
port [statusl: =5;
port[statusl:=$0e8;
end; {of Init }

{ set 510-1 'A' for program use

{ reset Channel 'A'
{ call 510 interrupt register I
{ disable interrupt functions
{ call 510 receiver parameters register 3
{ set for 8 data bits, enable receiver
{ call 510 protocol register 4
{ one stop bit, even parity, XI6 clock
{ call transmit parameter register 5
{ set for 8 data bits, enable trans.itt...
{ and set Data Terminal Ready, (DTR)

}

}

}

}

}

}

}

}

}

}

}

PROCEDURE WriteChar(kc:char); {send a character to ~ro }
{ because no human could ever type so fast that the Ampro would .iss a }
{ character no output handshaking is supported in this progra•• Other }
{ uses might require a treatment similar to that shown below for output }
{ handshaking. }
begin

repeat until (port[statusl and txrdy) <>S; < is buffer eMpty? }
port[dataportl :=ord(kc); {when buffer e~ty send character out }

end; {of WriteChar}

PROCEDURE Center(S: WorkString); < general utility for log-on, log-off }
var R: integer;
begin

for R:~1 to (80-Length(S» div 2 do Write(' ');
__ i tel n (5) ;

end; { of center }

{---------------------------- Begin "ain Progra. ----- }

}

}

}

}

}

}

{ get it if so }
{ if exit code then exit without}
{ sending to ~ro }

{ if valid character then send to AMpro }

{ Initialize 510-1 'A' for our use
(begin log-on sequence for Kaypro screen onl y

Soft_re" s');

begin
Init;
clrscr;
center ('Hermi t
__ iteln;
center('K-T~Version I.Sa');
__ iteln;
center ('A Kaypro 4-84 I A.pro Series 108 Du.-b Ter.inal Progra.');
center('Released Into The Public Domain July 1985');
__ iteln;
center('Press A@ to Exit');
__ iteln; writeln; __ iteln;'
writelnPSyst.. Ready'); __ iteln; {End of log-on sequence
finis:=false; { set initial boolean escape value
repeat { begin _in loop

if (keypressed) then (has a key been pressed?
begin

read(kbd,ch);
if (ch=~@) then finis :=true

else
Wri teChar (ch);

end;

< when 'finis' turns TRUE ca.es here}

}

}

{ log-off -.&sage
e tination

then { check to see if a character has been received }
{ set DTR BUSY flag line}

port[statusl:=DtrWait;
{ print the character }

{ reset DTR for next character }

if (ReadStat)
begin
port[statusl:=5;
write(ReadChar);
port[statusl:=5; port[61:=DtrRdy;
end;

until (f i n is);
writeln; writeln; __ iteln;
__ iteln('Exiting KTE~••••••• Have A Nice Day! ');
end.

48

ferent computers on a daily basis. I chose to alter the
operating environment codes. The size, and number of
commands in the TM system made the choice a little
easier.

ZCPR3 has a portion of the system BIOS set aside for
terminal control code definitions. We will discuss these
stored terminal codes, and how to use them, in a later ar
ticle. If you are using a popular terminal, or computer as
a terminal, installation is a simple matter. At the com
mand prompt enter:

AO> TCSELECT MYTERM< RET>

a menu of supported terminals will be displayed to select
from. The "TC" in the command name stands for "ter
minal cap." This 'cap" is the set of terminal control
codes stored in the system BIOS. The support for these
terminals, and systems, are very generic in nature. I
found that I received better performance from the
system by installing ZCPR3 manually, using the "TC
MAKE.COM" utility.

One of the very nice things about the Ampro systems is
the fact that they may be adapted easily to most any kind
of terminal, or display system. In my work for the
visually impaired we have used a serial keyboard as the
input device, and a voice sythesizer as the output device.
While we made extensive BIOS modifications, the actual
hardware interface took only moments to accomplish.
Due to the wide range of devices that may be used as a
terminal, specific installation discussion would be
meaningless to most readers. Everyone would feel that
their system was not covered. The Ampro documentation
is well done, and guides the first time user through the in
stallation steps required for non- standard terminal
systems.

As TM is the only full featured text editor, (ED.COM is
also provided), I do have a comment to make for those
who will be using TM for programming. TM produces
sterile ASCII code. Unlike some editors, who use flipped
bits and other trash for system use, TM does not put its
flags in the general text. It does have a quirk, however.

TM has a maximwn line length of 300 characters in a
CP1M system, 400 for 16 bit systems. Yes, 300 characters!
The screen can scroll left and right, as well as up and
down! An off-screen "fIrst line" stores the user's tab set
tings. A wide number of assemblers and languages get
very upset when the fIrst thing they see in the program
flIe is a line of 300 characters. This "tab line" is com
posed of nothing but spaces and tab characters.

When installing TM answer NO to the question "Should
TABs be stored with the flIe?" By placing the cursor on a
line of text and entering < ESC> S < TAB> TM will
record tab characters, for the current editing session
from this "model line." As TM is the bundled editor with
the Series 100 systems, I will provide a tab line for all
programs. The tab line problem is offset by the ability to
produce extremely high quality printed listings, and
documents with T/Maker.

For those who wish to leave the tab line in their text
flIes, there is an option. When saving programs enter:

NOTABSSAVE

The Computer Journal I Issue #22

at the "WHAT NEXT?" prompt. Remember that, like
ZCPR3, TM allows command lines of up to 255 charac
ters.

My only complaint with TM, other than having to learn
new editing keystrokes, is the inability to execute a .COM
flIe from the command line. Learning to use TM as a
programming tool will be included in future articles as
well.

While I didn't get into very much "good stuff" this
time, it is hoped that this information will help you to get
your system functional. Between the time you read this,
and the next issue of TCJ is published, make friends with
your system. In this way you will be ready for the projec
ts to come. There is a great deal planned for the future. A
new CCP, (console command processor), for a larger
TPA, a voice output enhanced BIOS, and a close look at
the schizoid 'E' drive which allows reading, writing and
formatting of other system's disks, to name but a few. I
didn't know where to start a column. So, I began at the
beginning, and there is a great deal I would like to cover
that I didn't even get close to this time. Of course, if you
have a project you are interested in seeing covered here,
let me know. This is your column, as an Ampro user. •

AMPRO User Support

Tom and I are both impressed with the AMPRO Little
Board and their Bookshelf 100 computer series, and we
making a major user support effort for these systems.

In addition to this series of articles <plus the NEW-DOS
series which is aimed at the AMPRQ), Tom is preparing
an AMPRO user disk library of 25 to 30 DSDD disks.
These disks will be distributed thru the TCJ office, and
we will provide an on-line RBBS when we can obtain an
additional phone line. New disks will be added to the
library as the material is available.

I am especially interested in SCSI related software,
and plan on establishing separate disk volumns for this
topic. Any SCSI material <whether for the AMPRO or
not) will be greatly appreciated.

It

,i[<

The Computer Journal/Issue #22 49

DON'T ASK HOW OURS CAN BE SO FAST •••
ASK WHY THEIRS ARE SO SLOW!

m,n sec 1:173:26 5:256:13 :08:22 ;4111:00

2Mhz 8Mhz SHIPPING USA/CANAOA' S3 • OTHER AREAS' $10
8" SS/SD Ram Disk ZIlO CP/M comPll~bthly reQuIred

•

~ C.O.D.• Cneck or
..... Money Order Accepted

1622 N. Main St., Butler. PA 16001
(800) 833-3061, (412) 282-0864
Telex 559215 SLR SYS

Now fully compatible with MaO
in .Z80 mode with many exten
sions. Time & date in listing, 16
char. externals, plus many other
features.

To order, or to find out more
about our complete family of
development tools, call or write:

figured that there just had to be
something wrong with the power
supply.

This is a very strange set up with a
low height switching type power
supply mounted directly beneath the
drives, and I have to set the drives
outside the case in order to get at the
supply. I put myoid Heath scope on
the output to check for 60 cycle ripple
(again), and it looked clean-but
then I noticed that the line looked a
little fuzzy. When I cranked up the
intensity I could see that there was a
lot of high frequency noise riding on
the DC. I put 20,000 mfd on each of
the outputs and the drives performed
flawlessly while the drives were out
of the case. After reassembling
everything I still get occasional
problems from RFI picked up by the
drives or the wiring. I'll have to pull
the supply and put it in a separate
well shielded enclosure with filtered
output or just replace it with a linear
supply.

It's little things like this that drive
you nuts! Share your experiences
and problems with others, perhaps
the Kalispell BBS will make it easier
to communicate.

-SLR.Systems

".. 8 breath of fresh air .."
Computer Language, Feb. 85

".. in two words. I'd say speed &
flexibility",

Edward Joyce, User's Guide #15

Computer Place and the storage is
limited, so please don't abuse the
privilage. Would it help if we had a
BBS on line during the limited hours
of lOpm to 6am mountain time until
we can obtain a second line? Leave a
message and let me know.

Tom Hilton 'will be the librarian
for CP/M user's disks in the Ampro
5% inch DSDD format, and the or
ders will be filled from the TCJ of
fice. We'll be starting with about 25
disks of general CP/M files, and will
add more as they develop. These
files can be provided on some ad
ditional formats on request. Watch
for more details in the next issue.

I've been plagued with erratic
read and write errors on one set of
Shugart 8008" single sided drives.
They would almost always read and
write OK on the outer tracks, but
would frequently give problems on
the tracks above about number 60. I
checked the voltages, changed the
head load pads, cleaned the heads,
and tried different disks, but the
problem would alway reappear. I
finally tried the drives in another
cabinet with a linear power supply,
and they worked perfectly so I

(Continued from page 1)

The SCSI Interface
Interfacing to microcomputers

has been limited by the lack of a
satisfactory high speed port. Most
Centronics<ll ports are implemented
as only a printer driver with eight
lines for data output and a few lines
of input for printer status. The RS
232 configuration dates back to the
slow Tele~ days and is slow
with a lot of non-standard implemen
tations, and the IEEE-488 doesn't
really fill the needs of the micro
market. The SCSI interface
(originally SAS!) was developed by
Shugart as a high speed parallel in
terface for hard disks, and is being
adopted by many manufacturers as
a general interface.

Almost every issue of the technical
design magazines tell about new
designs incorporating the SCSI inter
face, and you'll be dealing with it in
the very near future. Some of the
reported implementations are the
expanded Macintosh from Apple, the
next micro from IBM, and the Apple
LaserWriter II (which has 8 Mbytes
of RAM and ROM). The Ampro little
boards (both the Z-80 and the 80186
versions) provide SCSlplus, which is
one thing which makes these such
great development systems. Star
ting with this issue we'll have a
regular section on SCSI with
technical information, applications,
and product news.

Communications, User Disks, Odds
& Ends

We fInally have a 300/1200 baud
modem running on MDM740 (the
communications program came in
stalled an the Ampro) , and can
receive and send files over the
phone. We would like to establish a
bulletin board, but the phone com
pany can not provide a second line
and we can't tie up the existing line.
For now we prefer to receive articles
on disk, but arrangements can be
made to transfer by modem if you
call by voice in the evening. Short
messages and subscriptions by
charge card can be left for Art
Carlson on the Kalispell BBS (406)
257-6117 during the hours of 6pm to
Bam Monday through thursday, 6pm
Friday to 11am Saturday, and all
day on Sunday Mountain Time.
These facilities are provided by The

Editor

[
.-dI] AFFORDABLE11"11111

ENGINEERING
FREE CATALOG CP/M SO~ARE TRSDOS

MSDOS r I _~ PeDOS

• LOCIPRO Root Locus - S69.95
• ACTFIL Active Filter Design/AnalysIs - S69.95
• STAP StatiC Thermal AnalySIS - S69.95
• MATRIX MAGIC Matrix Manipulation - S69.95
• RIGHlWRlTER Proofreader & Writing Style Analyzer - S74.95
• ACNAP2 AC CirCUit AnalySIS - S69.95
• DCNAP DC CirCUit AnalYSiS - S69.95
• SPP Signal/System AnalySIS - S69.95
• PLOTPRO SCIentific Graph Printing - S69.95
• PCPLOT2 High Resolution GraphiCS - S69.95

50

The Magazine Marketplace
Now that Creative Computing and

Popular Computing have ceased
publishing, we need to think about
what we want in a magazine. Who
should support a magazine, the
readers or the advertisers'? Who
should a magazine support, its
readers or the advertisers'? Are
readers only necessary as numbers
to justify high advertising rates'?

I have just received a mailing
from Ziff-Davis Professional List
Services offering to rent the mailing
list for Creative Computing (which
Ziff-Davis shut down last month),
and they say that Creative Com
puting has (or rather had) 233,772
subscribers. If my memory serves
me right, one of the other magazines
had over 500,000 subscribers when
they shut down. These magazines all
gave the same reason for
folding-falling advertising income.
It didn't matter that they had
several hundred thousand sub
scribers-advertising dollars were
what kept them open.

You would think that the subscrip
tions from a half-million readers
should be enough to support a
magazine without ANY advertisers,
but producing a slick magazine with
lots of four color illustrations is very
expensive. Magazine rack sales are
another drain. I have seen audited
reports which stated that 60% of the
magazines sent to the magazine
racks were unsold and sent to the

shredders. The specifics in one case
were 90+ thousand sent out and 60+
thousand shredded for that month.
Someone has to pay for the 60,000
magazines turned into scrap
paper-and it isn't the subscriber.

Everthing seems to cost too much,
and subscriptions to the better
magazines are not cheap, but in
many cases the price of a subscrip
tion does not even cover the cost of
printing and mailing the issues-and
I understand that when subscrip
tions are placed through the national
subscription agencies all of the
money may go to the agency without
one penny to the publisher. We sub
scribers have come to expect large,
slick, four-eolor magazines at low
cost, or even below cost, subscrip
tion fees. Then we complain about
the large percentage of advertising
(up to 75% of the space) and the
weak editorial content! As Frank
said in issue 402 of Echelon's Z-News
"Many computer magazine editors
have little or no investment in or
emotion for our industry or its har
dware...You seldom notice anything
written that offends anyone; you
notice they remind of melba
toast...Remember, their revenue
comes mainly from advertisers, not
from you their readers." It is ob
vious that if profit and continued
existence depend on the advertisers,
then the readers will be treated
merely as numbers to justify high
advertising rates-and the subscrip-

The Computer Journal/Issue #22

tion rates will have to very low to at
tract large numbers of readers who
don't gain much from the magazine.
I know that I've subscribed to
magazines which didn't have much
useful content, but they were so thick
and cheap that it seemed a bargain.

We publish TCJ for the readers,
and limit the advertising to products
that we feel our readers should know
about. The limited funds restrict the
amount of promotion we can afford,
and we can't pay the authors as
much as we would like, but we are
free to publish what our readers
want without worrying about offen
ding any advertisers. If you like an
article, write the author and let him
know, because they aren't doing it to
get rich but rather because they
want the information published! •

Registered Trademarks

It is easy to get in the habit of using
company trademarks as generic terms,
but these registered trademarks are
the property of the respective com
panies. It is important to acknowledge
these trademarks as their property to
avoid their losing the rights and the
term becoming public property. The
following frequently used marks are
acknowledged, and we apologize for
any we have overlooked.

Apple ll, II + , lle. lie, Macintoseh.
DOS 3.3, ProDOS; Apple Computer
Company. CP/M, DDT, ASM, STAT.
PIP; Digital Research. MBASIC;
Microsoft. Wordstar; MicroPro Inter
national Corp. mM-PC, XT, and AT;
mM Corporation. Z-SO, Zilog. MT
BASIC, Softaid, Inc. Turbo Pascal.
Borland International.

Where these terms (and others) are
used in The Computer Journal they are
acknowledged to be the property of the
respective companies even ifnot
specifically mentioned in each occuren
ceo

If

'.

,.,

".

'"

lilll Engineering ~ [.J
Prolesslona I Soltware iI!!iiii!!I
2200 BUSiness Wify. SUite 207 • RIV/''O,Qp CA 92501 • (714' 781-0Z5Z

:,ijo

The Computer Journal I Issue '22 51

1=-- ~iiiiiiiiiiiiiiiiiiiiiiiiNiiiiiiiiieiiiiiiiiwiiiiiiiiiiiiiiiPiiiiiiiir°iiiiiiiidiiiiiiiiUiiiiiiiiCiiiiiiiitSiiil

Bootable Z-System for H89/90
Analytical Products offers a

Bootable Z-System disk for Heath
and Zenith models 89 and 90
machines with no installation
required. Just place the disk in the
drive and press reset and the full Z
System, completely replacing
CP1M, is up and running. The price
for the bootable disk is $98.00 plus
$3.00 shipping and handling. Source
code for ZCPR3 and its utilities, and
utilities of ZRDOS are also available
at additional cost. The ready-to-run
H89/90 Z-System can be ordered
from Analytical Products, 20663
Avenue 352, Woodlake, CA 93286, or
call Mr. Peter Shkabara at (209) 564
3687 for literature and more infor
mation on Heath and Zenith produc
ts.

Amiga-Lint C Diagnostic Facility
Gimple Software announced their

Amiga-Lint, a diagnostic facility for
the C programming language, run
ning on the Commodore Amiga.
They state that Amiga-Lint will
analyze C programs and report on
bugs, glitches and inconsistencies, in
effect, providing a strong typing
facility for C. Amiga-Lint looks
across multiple modules and so en
joys a perspective that a compiler
doesn't have. It aids considerably in
developing reliable programs and in
porting programs from other
machines and operating systems.
Amiga-Lint resembles the Lint that
runs on the UNIX O.S. but has more
feature and is better tuned to the
68000 environment.

Among the many errors reported
on by Amiga-Lint are: type incon
sistencies across modules,
parameter-argument mismatches,
library usage irregularities,
uninitialized variables, value-return
inconsistencies, variables declared
but not used, suspicious use of
operators and unreachable code.
Amiga-Lint has many features, in
cluding full K&R support, one-pass
very fast operation, no fixed-size
tables to overflow, configurable to

arbitrary architectures and special
Lint-style comments to suppress
errors. Amiga-Lint is delivered with
user-modifiable standard library
descriptions for several Ccompilers.

Amiga-Lint runs under Amiga's
CLI interface. It will use all the
memory available. Amiga-Lint is
available for the special introduc
tory price of $98.00, including ship
ping within the continental U.S.
directly from Gimple Software, 32f11
Hogarth Lane, Collegeville, PA 19426
(215) 584-4261.

CP1M-SO Emulation for MS-DOS
The lCU Group has announced

CP/EM-CP/M 80 Emulation which
they claim gives IBM PCIX:rlAT
and compatible computers the
ability to run thousands of CP1M 80
programs without the expense of ad
ditional coprocessor boards.

CPIEM efficiently emulates the
CP1M 8080 and Z80 environments on
an MS-DOS based personal com
puter. CP/EM allows MS-DOS
redirection of input and output
devices used to alter device assign
ment allowing CP1M access to all
standard MS-DOS devices and any
installed device drivers. CPIEM
uses the standard MS-DOS fIle
system allowing data fIles to be
shared between CP1M and MS-DOS
applications. The Command Interr
preter provides all of the standard
commands provided by the CP1M
console command processor.

CPIEM version 1.2 provides ter
minal emulations for the Kaypro 10,
ADM 3A/5 and Televideo 950. Serial
communications programs are in
cluded with CPIEM to aid in the
transfer of programs and data bet
ween the CP/M and MS-DOS com
puters. CPIEM runs on any MS
DOS, version 2.0 or later, based per
sonal computer with at least 32K of
memory available for application
programs.

CPIEM can be ordered from The
lCU Group, PO Box 10118,
Rochester, NY 14610 (716) 425-2519

DOS 3.3 Compatibility with Apple's
BOOK UniDisk

Apple Computer's new BOOK
UniDOS 3.5 drive gives five times the
storage capacity of floppy disks, but
no program support for Apple's DOS
3.3 operating system.
MicroSPARC's new UniDOS 3.3
operating system fills this gap for
programs and data fIles that exist
under DOS 3.3 by providing big SOOK
disk capacity and complete Ap
plesoft compatibility with Apple's
DOS 3.3.

Key UniDOS features are: (1) Two
400K volumes per disk; (2) Supports
up to two UniDisk 3.5 drives ad
dressable as drives 1-4; (3) Allows
intermixing 5.25 inch and 3.5 inch
drives; (4) Allows up to 217 catalog
names per disk; (5) Uses only 1K of
user memory (in addition to normal
DOS 3.3 memory space).

UniDOS 3.3 comes with a user
manual and Technical Data Sheet
showing the modified DOS 3.3 ad
dress for systems programming. It
runs on the Apple II Plus, Apple lIe,
and Apple lIe, and software
developer licenses are available.

UniDOS 3.3 is available for $49.95
postpaid from MicroSparc Inc., 45
Winthrop Street, Concord, MA 01742
(617) 371-1660

MasterFORTH Supports 8087
MicroMotion MasterFORTH 1.2

for the IBM PC family now supports
the 8087/80287 math co-processor.
This 8087 extension includes a com
plete macro assembler with local
labels supporting all precisions, op
codes, and synchronization. The
floating-point package includes a full
complement of transcendental and
high-level functions, as well as for
matted input and output routines.
Both the assembler and the floating
point package are provided as sour
ce mes and as relocatable overlays.
A software version of this package,
which completely matches the har
dware version, is also available. Ap
plications can test for the presence

(Continued on page 54)

52 The Computer Journal / Issue #22

1 B_a_c_k_l_ss_u_e_s_A_v_a_il_ab_l_e_: 1
Volume 1. Number 1 (IllueIf1):
• The RS·232·C Serial Interface, Part One
• Telecomputlng with the Apple]f: Tran·
sferrlng Binary Flies
• Beginner's Column, Part One: GettIng
Started
• Build an "Epram"

Volume 1, Number 2 (IllueIf2):
• File Trans/er Programs for CPIM
• The RS·232·C Serial Interface, Part Two
• Build a Hardware Print Spooler, Part
One: Background and Design
• A Review 01 Floppy DIsk Formats
• Sending Morse Code WIth an Apple]f
• Beginner's Column, Part Two: BasIc
Concepts and Formulas In Electronics

Volume 1, Number 3 (Illue 113):
• Add an 8087 Math Chip to Your Dual
Processor Board
• Build an AID Converter for the Apple]f
• ASCII Reference Chart
• Modems lor Micros
• The CPIM Operating System
• Build a Hardware Print Spooler, Part
Two: Construction

Volume 1, Number 4 (lssueU):
• Optoelectronics, Part One: Detecling,
Generating, and Using Light in Electronics
• Multi·user: An Introduction
• Making the CPIM User Function More
Useful
• Build a Hardware Print Spooler, Part
Three: Enhancements
• Beginner's ColJmn, Part Three: Power
Supply Design

Volume 2, Number 1 (lslue liS):
• Optoelectronics, Part Two: Practical
Applications
• Multl·user: Multi·Processor Systems
• True RMS Measurements
• Gemini· 1OX: Modifications to Allow
both Serial and Parallel Operation

Volume 2. Number 2 (ilsue 118):
• Build a High Resolution S·100 Graphics
Board, Part One: Video Displays
• System Integration, Part One: Selecting
System Components
• Optoelectronics, Part Three: Fiber Op·
tics
• Controlling DC Motors
• Multi·User: Local Area Networks
• DC Motor Applications

Volume 2, Number 3 (Islue 117):
• Heuristic Search in Hi·Q
• Build a High·Resolution S·100 Graphics
Board, Part Two: Theory of Operation
• Multi'user: EtherserieS
• System Integration, Part Two: Disk Con·
trollers and CPIM 2.2 System Ge,1eration

Volume 2, Number 4 (Issue '8):
• Build a VlC·20 EPROM Programmer
• Multl·user: CPINet
• Build a Hlgh·Resolutlon S·100 GraphIcs
Board, Part Three: ConstructIon
• System IntegratIon, Part Three: CPIM
3.0
• Linear Optimization with Micros
• LSTTL Reference Chart

Volume 2. Number 5 (ilsue '9):
• Threaded Interpretive Language, Part
One: Introduction and Elementary
Routines
• Interfacing Tips and Troubles: DC to DC
Converters
• Multl·user: C·NET
• Reading PCDOS Diskettes with the
Morrow Micro Decision
• LSTTL Reference Chart
• DOS Wars
• Build a Code Photoreader

Volume 2. Number 6 (lllue 1110):
• The FORTH Language: A Learner's Per·
spectlve
• An Affordable Graphics Tablet for the
Apple]l
• Interfacing Tips and Troubles: Noise
Problems, Part One
• LSTTL Reference Chart
• Multl·user: Some Generic Components
and Techniques
• Write Your Own Threaded Language,
Part Two: Input·Output Routines and Dlc·
tlonary Management
• Make a Simple TTL LogiC Tester

Volume 2, Number 7 (ilsue '11):
• Putting the CPIM 10BYTE To Work
• Write Your Own Threaded Language,
Part Three: Secondary Words
• Interfacing Tips and Troubles: Noise
Problems, Part Two
• Build a 68008 CPU Board For the S·100
Bus
• Writing and Evaluating Documentation
• Electronic Dial Indicator: A Reader
Design Project

Volume 2, Number 8 (Islue '12):
• Tricks of the Trade: Installing New /10
Drivers in a BIOS
• Write Your Own Threaded Language,
Part Four: Conclusion
• Interfacing Tips and Troubles: Noise
Problems, Part Three
• Multi·user: Cables and Topology
• LSTTL Reference Chart

Volume 2. Number 9 (Issue 1113):
• Controlling the Apple Disk if Stepper
Motor
• Interfacing Tips and Troubles: Inter·
facing the Sinclair Computers, Part One

• RPM vs ZCPR: A Comparison of Two
CP/M Enhahcements
• AC Circuit Anaysis on a Micro
• BASE: Part One in a Series on How to
Design and Write Your Own Database
• Understanding System Design: CPU,
Memory, and /10

Issue Numbe, 14:
• Hardware Tricks
• Controlling the Hayes Mlcromodem 1/
From Assembly Language
• 8-1008 to 16 Bit RAM Conversion
• Time-Frequency Domain Analysis
• BASE: Part Two
• Interfacing Tips and Troubles: Inter·
facing the Sinclair Computers, Part Two

Issue Numbe, 15:
• Interfacing the 6522 to the Apple]f and
]fe
• Interfacing Tips and Troubles: Building
a Poor·Man's Logic Analyzer
• Controlling the Hayes Micromodem 1/
From Assembly Language, Part Two
• The State of the Industry
• Lowering Power Consumption In 8 N

Floppy Disk Drives
• BASE: Part Three

Issue Number 16:
• Debugging 8087 Code
• USing the Apple Game Port
• BASE: Part Four
• Using the S·100 Bus and the 68008 CPU
• InterfaCing Tips and Troubles: Build a
"Jellybean" Loglc·to-RS232 Converter

Issue Numbe, 17:
• Poor Man's Distributed Processing
• Base: Part Five
• FAX-64:Facsimile Pictures on a Micro
• The Computer Corner
• Interfacing Tips and Troubles: Memory
Mapped /10 on the ZX81

Issue Number 18:
• Interfacing the Apple 1/: Parallel

interface for the game port.
• The Hacker's MAC: A letter

from Lee Felsenstein
• S-100 Graphics Screen Dump
• The LS-100 Disk Simulator Kit: A

product review.
• BASE: Part Six
• Interfacing Tips & Troubles:

Communicating with Telephone
Tone Control

• The Computer Corner

HII

Hi~

The Computer Journal / Issue *22 53

I....N1IIDber 21:
• Extending Turbo Puw: Customize with
Procedures and Functions
• UnlOldering: The Arcane Art
• Analog Data Acquisition and Control:
Connecting Your Computer to the Real
World
• Build the Circuit Designer 1 MPB: Part 2
Programming the 8035 SBC
• The Computer Corner

Illue Number 20:
• Build the Circuit Designer 1MPB:
Designing a 8035 SBC
• Using Apple II Graphics from CP/M:
Turbo Pascal Controls Apple Graphics
• Soldering and Other Strange Tales
• Build a 8-100 Floppy Disk Controller.
W02797 Controller for CP/M 88K
• The Computer COrner

Illue Number 11:
• Using The extensibility of FORTH
• Extended CBIOS
• A. $500 Superbraln COmputer
• Base: Part Seven
• Interfacing Tips & Troubles: Part Two
COmmunicating with Telephone
Tone COntrol
• MultItasking and Windows with CPIM:
A. review of MTBASIC
• The Computer Comer

OrderiDg lDformatfoD: Back issues are $3.25 in the U.S. and Canada. Send payment with your complete name and
address to The Computer J ournal.190 Sullivan Crossroad. Columbia Falla. MT 59912. Allow 3 to 4 weeks for delivery.

Classified
Book Sale - These books are offered at this
price while the supply luts.
Zilog ZBO-CPU Technical Manual. $UO
CBASIC Users Guide

by Osborne. Eubanks. and McNiff. $14.00
Introduction to FORTH

by Ken Knecht. $9.00
FORTH Programming

by Leo J. Scanlon. $13.00
These prices are postpaid in the U.S. only.
TCJ.I90 Sullivan Crossroad. Columbia
Falls. MT 59912.

S·I00 68008 CPU BOARD. Detailed descrip
tion in iuue 16 of The Computer Journal.
A&T $260. Kit $210. Bare Board $65. Prices
include shipping. INTELLICOMP. INC••
292 Lambourne Ave.• Worthington. OH
43085. Phone (614~216after 6 p.m.

CMOS PROTOYTPING SYSTEM. Uses
NSC-800 I.C. for Z-80 Compatibility. 4 STO
Bus Cards (Dual Serial IJO. CPU. 32K Static
Memory, 24-bit Parallel IJOI. battery
powered 6-slot card cage, and standalone
debugging monitor. Mates with Industrial
I/O Racks (Opto22. DuTech. etc.) Complete
package only $795 plus S&H. originally eost
over $1200. Brochure sent on request.
mpat Video. PO Box 20. Randolph. MA
02368. phone (617) 961-4197.

STD·Bu Card•• Wide usortment of SID
Bus cards. CPU.s. Memories (Static &
Dynamic types). Serial IJOs. CRT con
trollers. etc. Quantities limited. send SASE
for complete listing and prices.mpatVldeo.
PO Box 20. Randolph. MA 02368. phone (617)
961-4197.

'25 KEYBOARDS FOR COMPUTER
BUILDERS. Full ASCll. numeric pad,
UC/lc, CAPS-LOCK, REPEAT, SELF
TESTI Brand new, hundreds sold to
builders of Apples, Xerox 8208, Big Boar·
ds, etc. Parallel TTL output, strobe. 5
voits/IOO mao Custom case available.
Keyboard $25. Documentation (21
pgs.)/cable pkg. $5. Spare CPU/ROM $4.
All 3 ($34 value) $30. UPS additional,S
pounds. Detailed specs on request. Elec·
trovalue Industrial Inc.• Box 376-CJ,
Morris Plains, NJ 07950. (200-267-1117.

ORDER FORM

The Computer Journal, 100 Sullivan Crossroad. Columbia Falls, MT 59912 Phone (406) 257-9119

Address _

City '--__State ZIP _

o Check enclosed 0 VISA 0 MasterCard Card # _

Enter my subscription to The Computer Journal for the period checked. Payment in U.S. funds is enclosed.
o one year (6 issues) $14 in U.S. 0 two years (12 issues) $24 in U.S. 0 new subscription 0 renewal

Expiration date Signature _

Name _

---I
I
I
I
I
I
I
IBackIssues#'s @$3.25ea. -- I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
•---

54 The Computer Journal I Issue #22

Buy
$85000
$43500
$65000
$25000
$10000
$200.00
$20000
$ 65.00

i·i

GET PUBLIC DOMAIN SOFTWAREl
HUNDREDS OF FREE PROGRAMS AVAILABLE TO COPYI

PUBLIC DOMAIN Software IS not copyrighted so no fees to payl Accounting. data·base.
business. games. languages and utilit:es free for the taking' Some of these programs sold for
hundreds of dollars before being placed in public domain. JOin hundreds of users enjoying a
wealth of inexpensive software. Copy yourself and savel

USER GROUP LIBRARIES
Rent

IBMPC-SIG 1-390 Disksldes $41000
IBMPC-BLUE 1-154 Dtsksldes............................ $17500
SIG/M UG 1-240 Disksides $155.00
CP/M UG 1·92 Disksldes $ 45.00
PICO NET 1-34 Disksldes $ 25.00
KAYPRO UG 1-54 Dlsksldes $ 6500
EPSON UG 1·52 Disksides $ 6500
COMMODORE CBM 1-28 Disksldes $ 25.00

Get a PO User Group Catalog Disk· $5.00 PP - Specify Format l

Library rentals are for seven (7) days after receipt. three (3) more days grace to retum If you use
your credit card - no disk depOSit Shipping, Handling and insurance $950 per library Call
(619) 727-1015 for 3 min recording Call (619) 941-0925 orders and tech info

•

NATIONAL PUBLIC DOMAIN SOFTWARE r---l I

I D~~~~S I 1533 Avohill Drive, Vista, CA 92084 I AM EX : ! VISA .
- 1·800·621·5640 wait lor toni. dial 782542 I'

Advertiser's Index

BD Software 39

John Bell. 54

Alliance Computers 12

AMPRO Computers 8,43

Apropos 24

Artec 41

Barnes Research 40

rd computers. two
es for the IBM

ers. You can
systems.

automated
• irrigation

ems. auto
t control
vailable.

We have six singl
video boards
PC and AP
use our pr
heat cont
slide
systems.
mated
just to
For catalog call

JOHN BELL E:-;GI~'EERI!l/G. INC.
400 OXFORD WAY

BELMONT. CA 94002
(415) 592-8411

MICROCOMPUTERS
AND

INTERFACES

•• -11-_ ..

rapidly scan information and slowed
down to examine details. Volume,
pitch, tone, pausing and number
pronuncation can also be controlled.
A voice type can be selected accor
ding to the users preference, and the
time can also be spoken on demand.

Complete installation and start-up
instructions are provided on an
audio tape so that a blind user can
perform the installation without a
sighted companion to read the
manual.

SynPhonix 200-VIP retails for $295
and is available from Artic
Technologies, 2234 Star Court,
Auburn Heights, MI 48057 (313) 852
8344

New Products
<Continued from page 51)

of the 8087 co-processor and select
the appropriate overlay.

MicroMotion MasterFORTH 1.2
runs on all members of the IBM
family and includes a full file inter
face to MS DOS 2.1-3.1. It is also
available for the Macintosch, the
Apple family, the Commodore 64 and
CP1M. Software can be written on
one system and run on all the others.
MasterForth retails for $125, and
several additional extensions are
available. MicroMotion, 8726
sepulveda Fl. #Al71, Los Angeles,
CA 90045 (213) 821-4340

Computer Voice For The Blind
Artic Technologies announces the

release of SynPhonix 2ro-VIP, a low
cost voice synthesizer for Blind and
Visually Impaired users of the IBM
PC/XTIAT personal computers.

, This product works in conjuction
. with other programs to speak the
I video screen and text files. Blind in-

dividuals can use SnyPhonix in ap
plications such as word processing,
spread sheet calculators, program
ming, and other marketable com
puter skills. As a personal tool Syn
Phonix can be used to access com
puter bulletin boards, data bases,
write letters, etc.

A variety of voices and features
can be controlled by the user from
the computer keyboard. Speech can
be set to an extremely fast rate to

Remote Measurement. 38

Bersearch. .. 9

Blankenship Basic 40

BV Engineering. 50

Classifieds . 53

Computer Trader 37

Digital Images 46

Echelon, Inc 4, 29

Intellicomp , 19

Jerryco 2O

Miller Microcomputer services 41

Micro Systems Research 24

Next Generation Systems 26

Poor Person Software 15

Public Domain Software : 54

SLR Systems 49

SOftaid 31

The Computer Journal/Issue #22 55

Computer Corner

TYPICAL 10 MARK OF FORMATTED DISk

FF FF FF 00 00 00 00 00 00 FE 02 0tI 14 /HI C3 20 FF FF FF FF FF
I • , I
• • • I-------------------- -- -- -- -- -----

NOTE: USE G90t10 TO RUN PROGRAM, I1UST BE ON DESIRED TRACk FIRST
9008 WILL CHANGE FOR DIFFERENT DRIVES AND DENSITY. CHECk
BOOl<. FIRST AND WATCH OUT FOR INVERTED LOGIC.

Don't forget the traditional sources
for help on FORTH:
FORTH INTEREST GROUP, PO
Box 8231, San Jose, CA 95155. They
publish FORTH DIMENSIONS
which is included with the $15
membership fee.
MOUNTAIN VIEW PRESS, INC.,
PO Box 4656, Mountain View, CA
94040. These people were the
origin! publisher of FORTH
Dimensions, but now are strictly a
resource center for FORTH
publications.

designed and implemented. The
sample is a Z-80 FORTH. A good
book for those who want to know
more, somewhat entertaining,
also.

Inside F83 by C.H. Ting Phd,
OFFETE Enterprises, Inc. For
those using FORTH 83 this book is
a must. I was stumbling along until
I got it. The introduction and
details will answer almost all
possible questions.

To see and read about some dif
ferent applications try one of the
special group publications such as
FORML Proceedings and The
Rochester Proceedings, or The
Journal of Forth Applications and
Research. I got a couple of these
books and found some interesting
stuff. The degree of help is limited
however as these were papers
presented at conferences. •

CRC
SECTOR LENGTH

SECTOR NUl"lBER
5 I DE NUI'1BER

TRACK NUt1BER
THIS TELLS CONTROLLER 10 FOLLOWS

90t10 0tI 0tI NOP NOP ;NO OPS TO HELP SET THINGS UP RIGHT
9002 16 IA MVI O.IAH ;LOAD NUMBER OF SECTORS IN 0 REGISTER
9004 21 0tI 01 LXI HL.0100H ;ADDRESS TO START WRITING TRACk DATA TO
9007 3E 2D MVI A.70 ;LOAD A WITH DRIVE B NUMBER AND DENSITY
9009 03 63 OUT 63 ;OUTPUT A TO DISk CHIP. SELECT DRIVE
990ft F3 01 ; TAKE CONTROL AND STOP ANY INTERRUPTS
900C 06 0tI MVI 8.00 ;SET UP LOOP COUNT VALlIES
900E 0E 67 MVI C.67 ;DATA PORT ADDRESS IN C FOR INDIR
9010 3E E4 I'1V I A, 34H ; 0 I Sk CH I PS FULL TRACk COI'1ttAND
901 2 03 64 , OUT 64 ; TELL 0 I 51(CH I P READ A FULL TRACk NOW
9014 18 0tI JMP R,0 ;WAIT A FEW CLOCK CYCLES
9016 18 tII0 JMP R.0 ;WAIT SOl'tE I10RE FOR CHIP TO GET DATA
9018 ED 82 INIR ; Z80 GET DATA FROI'1 I/O AND WRITE TO HL
901 A 15 OCR 0 ; COUNT DOWN ON LOOP COUNTER
9018 C2 0C 90 JNZ 91il0C ;STILL LOOPING GO BACk AND GET I10RE
901E FF FF FF RST 7 ;GET BACK TO DDT PROMPT.

Threaded Interpretive
Languages by R.G. Loelinger,
BYTE Books. This book discusses
how a FORTH type system is

many hardware extensions are
needed to handle the project. What is
missing from the other ways, which
the SolDO would provide, is the coSt of
this solution. This solution makes
use of the already existing supply of
8 and 16 bit boards, disk controllers
and 110 cards. Most 32 or 16 bit
systems still write/read the disk in 8
bits and do their 110 in 8 bits, which
leaves only memory, graphics, and
CPU functions needing a larger data
path.

A project then for the future will be
a 68020, doing 16 bit data transfers.
The CPU will be spread over two
cards for using two halves of a 22 slot
bus. Regular 8 bit memory and I/O
cards will be in either half, only the
data path will be split, lower 8 bits in
front, upper in back. The need for
such a system would be fast 16 bit
wide video mapping, and this video
would make up the other half of the
CPU card. The 24 bit Sol00 address
would be the same for front and
back, allowing generic cards to be
used throughout.

The operating system for the
above would be FORTH, and my
project on putting FORTH in ROM is
still moving along. A few good books
for understanding FORTH are:

32 Bit System Bus
On a different note, I would like to

propose a new standard for using 32
bit systems. One of the topics of con
siderable discussion is how to handle
the new 32 bit wide data structures.
For the hobbyist it is a real problem
of cost versus speed. Most new
systems are being designed as stan
dalone units which do not use a bus
system. This idea doesn't make use
of a hobbyist's already existing sup
ply of computer stuff. In my case, I
have quite a few S-lDO boards and
would like a system that used them.
Currently, S-lDO will handle 16 bits
by multiplexing the data bus after
flagging a sixteen bit move. SolDO
also has some known speed limits,
abour 10 to 12 MHz at present.

I find the speed and use of the six
teen bit flag an acceptable solution,
but the bus doesn't have room for
more data lines. My proposal is to
use two SolDO buses, side by side. The
32 bit only card would be a double
width SolDO card. This would require
a standard spacing between the bus
systems but for 32 bits that's OK.
This newer use of the extra S-lDO bus
would not have to be the standard
pinout. However, if the same pinout
was used on both buses it would
make it possible to use the same
memory cards in each side for 16 or
32 bit wide data. The use of different
SolDO pinouts on the other hand,
allows for some special functions
and signals not now supported by the
standard.

Another option to the use of two
buses side by side would be splitting
a 22 slotter in half, by cutting all the
traces (except power and ground) at
the half way point. A special 32 bit
master card would be two separate
cards connected together (by cable
or socket connection) that spanned
the cut traces. In either case, the
signals and pinouts could either be
the same or different, depending on
the standard developed. I know that
Viasyn was looking for a way to han
dle preregulated power supply
signals, and this· could also be han
dled with two different buses.

This concept isn't new, as several
of the big boys already have systems
in which a standard number of pins
is used, but the number of sockets
per card varies depending on how

56 The Computer Journal/Issue #22

THE COMPUTER CORNER
A Column by Bill Kibler

Several things have happened
recently to cause me to review some
disk format fundamentals. It seems
that most people have some idea
about how disks are formatted and
used, but some misconceptions
abound about a few simple but im
portant concepts. What must be kept
in mind when dealing with dissimilar
formats are the software and har
dware parameters. The hardware
part is how your computer's disk
controller formats, writes, and reads
disks. The software part is the
tricking of hardware to read or write
unusual formats.

Let's review things by looking at
standard eight inch disks, using the
single density format called IBM
3740. This single density
arrangement was established way
back in the beginning and is the only
true standard of any disk format.
The disk has 26 sectors of 128 bytes of
data and plenty of overhead infor
mation. It is this overhead infor
mation that can cause some trouble
with varied formats. The disk con
troller will check the "ID marks" (a
part of the overhead) to find out if it
is on the right track, and then find
the correct sector. Other infor
mation in the ID is the sector size
(OO=80h, 01=100h bytes) and a CRC
flag. A good way to see what a
proper disk format is, is to do a full
track read. I have supplied a simple
listing that will allow the SDSystems
Versa Floppy II to read a full track
(read the comments and change for
other systems). My procedure is to
use SID (or DDT) and clear memory
to AOOOh and assemble the listing at
9OOOh. This allows you to exit SID,
change tracks or whatever, and
return to SID to reread a new track.

Now that you have seen a full
track, what do you look for if this is a
disk you have been unable to read? I
look first for the order of sectors, are
they in sequence or skewed?
Skewing is done to get more sectors
read during each rotation of the disk.
Disk read time is not fast enough to

read one sector after the other. The
delay needed to change pointers and
set registers for the next read, is
usually enough that a skew of six
(skipping five sectors and reading
the sixth) works fine. This is part of
the standard and will be handled in
most BlOSs. Some systems however
do it during formatting and will need
the BIOS's skew turned off.

This is actually one of the points of
this whole discussion, as most people
have trouble understanding the dif
ferences. Looking at a directory
track might help. A non-skewed
system (no skewing of any kind)
would have the sectors numbered in
order and the directory sectors
would correspond with the sector
numbers. A standard disk would
have the sector numbers in order but
the second directory sector would
not be found in sector number two
but in sector number seven. A hard
skewed track would find sector
number two in the seventh sector
from the beginning location. The
standard system will use a skew
table and the hard skew will not.
What most people have problems
with is how the system performs this
operation. The operating system will
ask for a logical sector number. The
BIOS will change (or not) the sector
number into the skewed value (2
becomes a 7 in standard systems).
This value is then stuffed into the
disk controller sector register and
used to find the actual sector. You
must remember that it is you that
tells the controller which sector to
get and it reads the ID mark to find
that sector. A common misunder
standing is the use of the index hole.
Some early systems counted sectors
starting at the index hole and the
recorded sector number was unused.
Most new disk controller chips
however use the formatted sector ID
mark to find the proper sector.

It is my understanding that on
most new systems you will find the
index hole used only for full track
reads and writes. Some chips like the

NEC 765 also provide their own for
mat options. The WD179X series
uses a full track write for formatting
(you supply the data string). The
most common use for the Index
timing mark is to check disk size
(five and eight inch timing is dif
ferent) and for disk status (ready)
condition.

We can conclude this discussion by
reviewing how to copy or use a dif
ferent formatted disk. First is to do a
full track read through a hand
assembled program or your
system's monitor. This will give you
the sector size, skewing information,
and density (single or double). For
double sided drives you will need to
check the track order as some
systems go from side to side (all odd
number tracks on one side of the
disk) while others fill one side before
going to the other side (the ID mark
tells which side, hopefully). The next
operation is to use the listing of your
BIOS (the PRN file) and find the
disk's DPBA table (can be found by
using DDT if you know what to look
for). This table has the address for
the DPB (parameter blocks which
tell the system block size, number,
etc,) and the XLT (translation table
for skewing). For no skew systems
the XLT can have all zeros, for
others it will point to a table of skew
values. The translation program
steps through the table based on the
logical skew number. The value in
the table is then sent to the disk con
troller. Patching tile table with DDT
will work for different skews.

Many little things must be kept in
mind however. Your BIOS must
support double density or larger
blocks, to be able to read double den
sity disks. If the number of sectors or
blocks is different than before, new
values will be needed in the DPB.
Systems can have a different num
ber of system tracks and the offset in
the DPB must match. Side differen
ces will need to be checked as
system programmers do it differen
tly.

"

